
HD-RI51 694 DESIGN AND IMPLEMENTATION OF THE DIGITAL ENGINEERING V/2
LABORATORY DISTRIBUT..(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI- J G BOECICHAN

UNCLASSIFIED DEC 84 AFIT/GCS/ENG/84D-5 F/G 9/2 N

sohmmhhohhohu

jl _ . . rrw.5 = . tWX7V. .ThL"' 2,. . F .Pt . ' ,- J* - b. ,- 7 '. ..; . o - m . .- .V': ., 1. W.' . . - -. : - , * -

- L.,III6 I mL
111111.25~ 2.

IIII -

liiii'-

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

I%

lil~iiii~ :--ii : i~i-:--iii~i ,i ; i., ".. "............... "... . ..
--. . . , •

-.. RE ***.'ll) AT'GO VEA NM N ex- eIs[%' - -

9.0

,.8D

In

DI
~OF

DESIGN AND IMPLEMENTATION OF THE
DIGITAL ENGINEERING LABORATORY

DISTRIBUTED DATABASE MANAGEMENT SYSTEM

THESIS

John G. Boeckman
Captain, USAF

AFIT/GCS/ENG/84D-5

DISTRIBUTION STATEMENT A DTIC
I j A,,p ublcloa lELECTE

ij Dmbution Unlimi d MAR 2 8

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

85 03 13 136

• :: ::- - -.:; T -i: '- :-.-:-::- ..._ ~~~~. .:, . :... ,,,,..,, .. :.;....:., .::

DESIGN AND IMPLEMENTATION OF THE
DIGITAL ENGINEERING LABORATORY

DISTRIBUTED DATABASE MANAGEMENT SYSTEM

THESIS

John G. Boeckman
Captain, USAF

AFIT/GCS/ENG/84D-5 TIC
ELECTE

MAR 2 8 W

Approved for public release; distribution unlimited

AFIT/GCS/ENG/84D-5

DESIGN AND IMPLEMENTATION OF THE

DIGITAL ENGINEERING LABORATORY

DISTRIBUTED DATABASE MANAGEMENT SYSTEM

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

John G. Boeckman, B. S.

Captain, USAF

December 1984

Approved for public release; distribution unlimited

4.

Preface

The purpose of this study was to design a distributed

database management system (DDBMS) for use in the AFIT

Digital Engineering Laboratory (DEL). First, a requirements

analysis was accomplished using Structured Analysis and

Design Technique (SADT) diagrams. Next, a detailed design

was done finishing up the SADT diagrams and using structure

charts to show the module decomposition. Part of the design

was implemented using computers in the DEL computer network.

The results of the implementation were analyzed and

proposals were made for future DDBMS projects.

In performing the design and implementation, and the

writing of this thesis, I have received a great deal of help

from others. I am deeply indebted to my thesis advisor, Dr.

Thomas C. Hartrum, for his skillful help in time of need. I

also wish to thank Dr. Henry Potoczny and Major Walter

Seward, who were also on my thesis committee, for their time

and effort. Many thanks to Dan Zambon and Charlie Powers

for their technical assistance in the lab. Finally, I wish

to thank my dear wife Alice for her continuous, loving

support throughout this thesis, and for her many hours of

filling in SADT diagrams and structure charts. -

LA

. ..S,:. [

" " " 11-if

Table of Contents

Page

Preface.....................

List of Figures......................vij

Abstract.........................viii

I. Introduction.....................1

Background....................I
Air Force Applications.............4
Summary of Current Knowledge 5
Network Access Process.............8
Network Data Directory.............10
Network Database Management System . . .11
Interfaces....................12

4 Query Processing Procedure............12
Concurrency Control Process 13
Statement of the Problem.............14
Scope......................15
Assumptions...................16
Approach....................17
Overview of the Thesis..............1

Ii. Requirements Analysis.................20

Introduction..................20
Basic Requirements................20
Decomposition of the Requirements23
Initialize DDBMS................23
Reconfigure DDBMS.................25
Executing the DDBMS at the
Individual Sites.................27
Service Network Messages and Local
Requests....................28
Service Requests..................30 6
Servicing Local Queries. 32
Servicing Local Updates.............33
Servicing Remote Queries............34
Servicing Remote Updates............35

4 Servicing CNDD Site Requests..........35
Summary.....................36

Page

III. Detailed Design 37

Introduction 37
Further Decomposition of Requirements . 38
DDBMS Structure Chart Design 39
Initialize DDBMS at Site N 40
Get Next Message 42
Create and Queue Process 42
Service Reconfiguration Requests 43
Servicing Local Reconfiguration Requests. 43
Servicing Remote Reconfiguration Requests 46
Servicing CNDD Site Reconfiguration
Requests 46
Service Network Messages and Local
Requests 48
Service Requests 50
Servicing Local Queries 52
Servicing Local Updates 53
Servicing Remote Queries 54
Servicing Remote Updates 54
Service CNDD Site Requests 54
Message Formats 55
Summary 55

IV. Partial Implementation 57

Introduction 57
Implementation Architecture 58
Translator Modules 60
Module Implementation Decisions 61
Implementation Design63
Service Host Queries 65
Service Network Queries 66
Compute Network Query Results 68
Summary 70

V. Testing and Evaluation 72

Introduction 72
Testing of the Roth-INGRES Translator . . 72
Testing of Overall DDBMS Modules 73
Stopwatch Tests of DDBMS Test Cases . . . 76
Summary 77

iv

F . -. Page

VI. Recommendations and Conclusions 78

Introduction 78
Conclusions About the DDBMS Research . 79
Update Translators 80

. CNDD and Pending Update Software 80
Update Concurrency Algorithm 81

DDBMS Query Optimization Algorithm . . . 82-. DDBMS Reconfiguration Software 83

More Sophisticated Translators 84
Queue Processing Algorithms 85
Heterogenous DDBMS Software 86
Final Comments 86

Appendix A: Glossary of Terms for DDBMS Design . . 88

Appendix B: Requirements for the Digital
Engineering Laboratory Distributed
Database Management System 93

* Appendix C: Formats for Messages Transferred in
the DDBMS 95

Appendix D: Retrieve Statement - Roth Relational

Database System 100

Appendix E: Publication Article 104

Bibliography 126

Vita 129

The following additional thesis volumes are maintained at
AFIT/ENG:

Volume II: DDBMS Requirements Definition

Volume III: DDBMS Detailed Design

Volume IV: DDBMS Partial Implementation Design

v
_ S. _ . _ ". -. . . . •" " - ' - " " " " . .." " " - - ,-. ",. . ._ . . . i i . :.:.. i . : .- :: :: i " : -

List of Figures

Figure Page

1. DDBMS Architectures 3

2. Network Structure in the DDBMS 7

3. Interfaces in the DDBMS 8

4. ISO Layer-DDBMS Interface 11

5. SADT Activity "Execute the DDBMS"...... 24

6. SADT Activity "Service Network Messages
and Local Requests"......... 29

7. SADT Activity "Service Requests 31

8. Structure Chart for Process
"Execute DDBMS at Site N"....... 41

9. Structure Chart for Process
"Execute Process"44

10. Structure Chart for Process
"Service Network Messages and Local Requests" 49

11. Structure Chart for Process
"Service Requests"......... 51

12. DDBMS Implementation Architecture 58

13. Translator Design 62

14. "Execute DDBMS" 64

15. "Service Queries".• .65

16. "Service Host Queries".. 66

17. "Service Network Queries" 67

18. "Compute Network Query Results"..... 69

19. List of Roth Statements Used for Testing
the Roth-INGRES Translator 73

20. Entries for LNDDs and ECNDDs at
-- System A and System K 74

Lvi

- :i:4:..::I~* .1

Figure Page

21. List of Queries Used in DDBMS Testing . . . 75

22. Graph of Total Execution Times for
DDBMS Queries 76

23. Design of CNDD and Pending Update Software 81

24. Design of DDBMS Query Optimizer 83

25. Design for DDBMS Reconfiguration Software 84

v

' vii

I*

S.

AFIT/GCS/ENG/84D-5

Abstract

This effort produced a basic design and partial

implementation of a distributed database management system

(DDBMS) for use in the AFIT Digital Engineering Laboratory.

The objectives of this thesis were to lay out the

requirements for a DDBMS, to design a simplified

implementation of one, and to accomplish a partial

implementation of that design.

The requirements analysis used the Structured Analysis

and Design Technique (SADT) to document the DDBMS

requirements. The analysis, independent of any hardware or

specific algorithmic implementation, covers all aspects of a

DDBMS, including routing and execution of queries and

updates, DDBMS initialization and reconfiguration, and

recovery from network malfunctions.

The detailed design expanded the SADT diagrams of the

requirements analysis for specific methods of executing

queries and updates in the DDBMS. These methods were

selected to limit the scope of that design. Structure

charts were produced using the SADT diagrams as a reference,

specifying parameters and algorithms for the modules.

Only the part of the design that handles DDBMS queries

was implemented. The implementation was greatly simplified

to exclude query partitioning and optimization. Two DDBMS

viii

nodes were connected via the Digital Engineering Laboratory

network. These were, in turn, connected to host computers

*-,- that evaluate queries and return the resulting relation.

/- -/ A '* ,,o

-i 7-
-" -/

7,.-

S ..

(0

F

I-..
S'"

[L.-_ ,... -;i :- - - , ": :::::,-,--- , ,. - - -":: : ; " . - - ", , ",- :,.. . . ." ix:i

DESIGN AND IMPLEMENTATION OF THE

DIGITAL ENGINEERING LABORATORY

DISTRIBUTED DATABASE MANAGEMENT SYSTEM

I. INTRODUCTION

Background

A database is a large collection of data that is

organized for rapid retrieval and updating. Software that

controls data manipulation and structure in a database is

known as a database management system (DBMS). Databases

that reside on a single computer are known as centralized

databases, while databases that are spread over several

computers in a network are known as distributed databases.

The software that manages tasks occurring in a distributed

database is a distributed database management system

(DDBMS). Other terms used frequently in this thesis are

defined in a glossary in Appendix A.

There are several advantages that a distributed

database has over one that is centralized. Users have

access to larger amounts of data. More users can access the

data. If one computer goes down in the network, other

computers can still operate in the network without it. Data

can be spread over several computers, lowering access time

and storage requirements for each computer.

Naturally, there are also disadvantages. Complexity is

1

7 - 7

" -increased dramatically in a distributed database system.

Most distributed databases in use today are custom-designed

for a specific application. Many data problems must be

overcome in a distributed database; for example, keeping

copies of the same data concurrent, preventing data

deadlock, and running queries and updates efficiently.

Keeping track of data on several computers requires an

extensive data dictionary spread among the computers in the

network.

There are three approaches to distributed database

management systems. The integrated, homogeneous, and

heterogeneous models are shown in Figure 1 (5:7-10). In

the integrated model, each DBMS is designed being connected

to the others in the network, and can access them without

data translation, as shown in Figure la. This strategy

reduces the useful CPU time at each computer, and requires

memory to store the data exchange process, two reasons for

its lack of popularity.

The homogeneous model removes the network data exchange

4 module from memory at each computer, and installs a

communication software module between each computer and the

rest of the network, as shown in Figure lb. In this model

each computer must support the same DDBMS as the others.

This is the most common method of implementing distributed

databases.

The heterogeneous model can link different DBMSs

2
4i 2 S

.

DBMS DBMS
*1 2. . .

COMMUNICATION
CHIANN EL

(a)

DBMS DBMS DBMS
1 2 ... n

COMMUNICATION COMMUNICATION COMMUNICATIN

MODULE MODULE MODULE

COMMUNICATION
CHANNEL

(b)

DBMS DBMS DBMS
1 2 ... n

COMMUNICATION COMMUNICATION COMMUNICATION
MODULE MODULE MODULE

TRANSLATOI TRANSLATOR ITRANSLATOR
E MU MODULE

COMMUNICATION

CHANNEL

(c)

Figure 1 (a) Integrated Architecture
(b) Homogeneous Architecture
(c) Heterogeneous Architecture (5:10)

3

together through a distributed database. Since the DBMSs

" .- are incompatible, a translator software module is installed

between the communication module and the network

communication channel, as in Figure 1c. This is the most

flexible model, but also the most complicated to implement.

*. A universal database model would greatly enhance the

usability of a heterogeneous model, since software could be

written to translate from any type of DBMS language to the

universal model, and from the universal back to the original

language. Also, all network functions in the DDBMS could be

written in that one universal language.
0

Air Force Applications

The Air Force is currently engaged in large-scale

(0 research and development to harness the technology of

distributed databases to solve Air Force problems. Dawson

of Mitre Corporation (2) discusses using distributed

databases for a field-deployable, tactical air control

system.

The Worldwide Military Command and Control System is

*heavily dependent on networking capabilities, and in an

article Coles of Mitre Corporation (1) discusses current

data management and distributed processing problems. Later,

*the article discusses computer architectures and design

approaches, alternatives to current methods of operation,

that could lead to improved future systems.

* Rome Air Development Center (RADC), Griffis AFB, NY,

4

sponsor of this thesis, is doing distributed database

research through contracts with the Computer Corporation of

America which published a three-volume paper describing

their efforts (6, 7, 8). In the first volume, the

contractor describes the foundation necessary for

understanding concurrency control and recovery from network

problems (6). The second volume describes work on the

performance analysis of concurrency control algorithms (7).

The final volume provides a handbook of information about a

number of important concurrency control algorithms used in

the design of a distributed database management system (8).

Another Air Force organization involved in distributed

database processing is the Space Defense Operation Center

(SPADOC) in Colorado Springs, Colorado. TRW has developed a

model of the SPADOC data processing environment (9) that

maintains tables on database access requirements, file

locations, and other performance data. The model is used to

fine-tune performance by measuring and analyzing the design

effectiveness of the distribute database at SPADOC.

Summary of Current Knowledge

The DDBMS is executed in a network with a group of host

computers connected via low bandwidth communication lines.

The network may be either a local area network with the

computers in close proximity, or a network spread across

geographically-dispersed locations. The network appears as

5

in Figure 2, with each site connected in some communication

- configuration in the network. One of the sites in the

network is chosen at startup time as the central site, and

contains the Centralized Network Data Directory (CNDD),

which stores locations of all data items in the distributed

database (5:69). The central site also stores files of

pending updates, which contain updates to inactive sites in

the network which have copied data that was updated at an

active site.

At each site, a software module executes to perform

that particular site's functions in the distributed

database. That software module must interface directly with

the user, the local DBMS, the network, and the network data

directories at the site. The functions of the network data

directories will be described in the following sections.

Figure 3 gives an overview of the distributed database

interface design. The design leaves open the option of

having either a multiprogramming system, such as a VAX

11/780 computer, or a dedicated processor system, such as an

LSI-ll, as sites in the distributed database. For a VAX-

type system, the DDBMS software would be one of a number of

*. processes, including the DBMS interface to the distributed

database, running concurrently in memory. For an LSI-type

system, the DDBMS would run as a dedicated process

- - communicating with the local DBMS in an attached host

computer.

6

0

0

ri -77-'7 '7 T 7 7
HOST

Figure 2 Network Structure in the DDBMS

In 1982, Capt Eric F. Imker (5:63-79) produced a high-

"*.- level design of a distributed database management system

(DDBMS) for use on computers in the AFIT Digital Engineering

Laboratory (DEL). Though the structure of his design is not

used in this thesis, it is presented here to maintain its

consistency. His design includes three parts:

(1) The Network Access Process (NAP) which includes

communications hardware and software to link each computer

to the rest of the network, and also information on the

status of the rest of the DBMSs in the distributed database.

(2) The Network Data Directory (NDD) which maintains

* information on the location of data in the distributed

database.

7

SOTHER LOCAL

HOST F th DBMS
PROCESSES

(OCAL DBMS
INTERFACE

whSch provide anitefcebtweWac oclDBSanK h

USER DIRECTOR NETWORK
i-i, INT ERFACE

DIRECTORIES

Figure 3 Interfaces in the DDBMS

(3) The Network Database Management System (NDBMS)

which provides an interface between each local DBMS and the -

entire distributed database.

Network Access Process

The Network Access Process (NAP) is the term used by

g8

..................... . ..-.. •.".........". ". ,. . °

Imker to describe the function of interfacing the DDBMS at

each site with the network. The Network Operating System

(NETOS) in the DEL network handles the routine functions of

the network, sending and receiving messages, protocols, etc.

The NETOS functions under a seven-layer protocol governed by

the Reference Model of Open Systems Interconnections (OSI)

developed by the International Standards Organization (ISO).

(reference the LSINET Network Protocol) The model outlines

the framework of a protocol scheme for computer system

communications and interfaces. Figure 4 illustrates the

seven ISO layers (11:453-487).

Each layer is connected via subroutine calls and

hardware interfaces only to the layer above and the layer

below. The Physical Layer, the first layer, is concerned

with primarily the hardware connection protocol. The second

layer, the Data Link Layer, groups the data into data frames

and checks for correct transmission of the frames. The

Network Layer, layer three, manages the routing of data

frames around the network. Layer four, the Transport Layer,

is used to establish host-to-host communication, to transmit

variable-length buffers of data, and to terminate the host-

to-host link. The fifth layer, the Session Layer, converts

between logical and physical source/destination references.

Layer six is known as the Presentation Layer and transforms

application program inputs into standard NETOS formats.

Finally, layer seven consists of the Application Layer,

9

IL

which involves a particular application running on a host

computer in the network.

Figure 4 shows that the DDBMS software interfaces with

the NETOS at layer five. This has been chosen since the

DDBMS software provides only logical and not physical

source/destination references, and the software handles the

*- functions of the Presentation Layer, layer six, by preparing

inputs in the standard NETOS format. Imker also conceived

the NAP maintaining a table of status indicators for the

other sites in the distributed database.

Network Data Directory

The Netork Data Directory (NDD) consists of the Local

Network Data Directory, the Centralized Network Data

Directory, and the Extended Centralized Network Data

Directory. The Local Network Data Directory (LNDD)

contains data locations for all data items residing at a

particular location. The NDBMS provides updates to the

LNDD.

The Centralized Network Data Directory (CNDD) contains

directory information about each remote DBMS. There is only

one of these in the distributed database. It maintains the

data entity names and location where each data entity

exists. The NDBMS will also provide updates to the CNDD.

The Extended Centralized Network Data Directory (ECNDD)

is a smaller version of the CNDD, and one is located at each

site in the distributed database. The ECNDD contains a data

10

ISO Layer Representation

4 DDBMS
7 Application Software

6 Presentation Interface

5 Session

4 Transport

3 Network

2 Data Link

1 Physical

Figure 4 ISO Layer-DDBMS Interface

entry location for each data item that is requested by a

particular site. Since the ECNDD could coticeivably grow to

the size of the CNDD, it will be limited to "N" items, where

N is an experimentally determined value. The NDBMS will

also provide the ECNDD with updates, which will replace

items in the ECNDD by using a Least Recently Used (LRU)

algorithm.

Network Database Manayement Sy stem

The Network DBMS (NDBMS) is the term used to describe

the main software module of the DDBMS at each site in the

network. It provides an interface between a local DBMS and

11

the distributed database. It consists of the interfaces to

* .the user, the local DBMS, the NAP, and the LNDD; a query

processing procedure; a concurrency control process; and

backup and recovery procedures.

Interfaces

- The NDBMS interfaces (to the user, the local DBMS, the

NAP, and the LNDD) allow the NDBMS a means to communicate to

each of these areas. The NDBMS uses these interfaces to

coordinate its activities with the other sites in the

distributed database.

Query Processing Procedure

The query processing procedure consists of a universal

data model translator, a replication process using the ECNDD

at a site, a universal query language translator, and a

query optimization process. The universal data model

translator transforms query results from data entities in

the format of the local DBMS into universal data entities.

The replication process maintains a table to indicate

which remote data entities are used and how often. This

table, stored on the ECNDD, is needed to determine how to

replicate data based on the amount of usage. In the table

there is a counter for each data entity in the ECNDD. If

the counter reaches "M" (an experimentally determined value)

before the entity is purged then the entity is replicated at

the local computer, if possible. Replicating an entity

12

S "

includes removing the item from the ECNDD, adding the item

to the LNDD, and informing the CNDD of the replication.

The universal query language translator, which

retrieves remote data, builds a query to forward to remote

computers when the NDBMS requires data from those computers.

Each query is decomposed at the computers with the data.

Then the resulting data is returned to the originating

computer for further processing.

Also, the NDBMS optimizes each query function. Queries

requiring remote data are divided into two types, unique and

replicated requests. Unique requests are those for which

all the data entities desired exist on one computer. For

these, the NDBMS forwards the request to a computer that can

most efficiently process the request. At that computer, the

request is processed completely, and the result is returned

to the original computer. Replicated requests consist of

local and remote or multiple remote requests. For these, a

recursive technique developed by Eugene Wong (14:50-68) will

be used in future thesis efforts to optimize query

processing by minimizing data movement.

Concurrency Control Process

The concurrency control process ensures that copies of

replicated data are updated concurrently with one another.

Imker chose the majority consensus voting algorithm to

accomplish concurrency since it forces copies of replicated

data to converge to the same values, and it also prevents

13

deadlock. In the algorithm, - dividual DBMSs with copies of

the data vote on an update request. If a majority vote to

accept the request, then it is applied to all copies of the

data. DBMSs that vote use timestamps to check the validity

of an update.

There are six steps used in the voting and updating

procedure:

(1) A DBMS receives a request and decomposes it to

obtain the data elements required for the update and the

timestamps associated with each data element.

(2) The DBMS creates a modified update request by

attaching the new values of the data elements and their

respective timestamps.

(3) The request is forwarded to all other DBMSs which

have a copy of the data.

(4) Each DBMS with a copy of the data votes on the

update.

(5) If the request is approved by a majority of the

DBMSs which are involved, then the update is made.

(6) If the request is rejected, then the originating

DBMS may resubmit the request.

Statement of the Problem

The objective of this thesis was to continue Imker's

work in the design of a DDBMS. To complete the design, this

project produced a detailed requirements analysis and a

14

detailed design of the DDBMS software required at a typical

node (computer in a network). Also, software to connect two

nodes in the distributed database was written to test the

DDBMS design.

The main purpose of a distributed database is to allow

the user to access several databases spread over a network

as if they were one. This is accomplished through DDBMS

software which optimizes a user's query to obtain the query

in the least amount of time possible. Another purpose of a

distributed database is to update copies of data in such a

way that the copies converge to the same values (though

copies of data might not have the same values at a

particular instant in time). Deadlock, a state where one

process is waiting for data held by the other process, must

be prevented, or at least recovered from, to allow for

continuous data throughput.

Scope

The detailed requirements analysis examined Imker's

high-level design and developed a set of requirements

stating what software modules are necessary for a DDBMS in

the AFIT DEL. The basic setup for a DDBMS was made, though

some complicated parts were simplified due to a lack of

time. The universal data model, which will translate

between different types of database management systems, was

being designed concurrently as another thesis, making it not

available for use. Instead, a relational structure was used

15

a -1 _P - * .7 "-k

for intersite communications. Relational queries and data

were passed over the network. Two relational translators

were built to test the DDBMS software on various computers

in the DEL.

The first six ISO layers were in place, so this project

interfaced at the fifth layer without being involved in the

deeper levels of the NETOS ISO structure. Only two sites

were implemented to work out the many initial problems in

the software. Queries were not optimized as in Wong's

design, but sent either to a single site that contained

unique data, or to the first site in a list of sites that

had replicated data. The passing of queries and data over

the network also was not optimized. An already in-place

relational optimizer was used to optimize the queries

concerning their relational structure.

No concurrency control or deadlock prevention algorithm

was implemented. Updates for data replicated at two or more

sites in the network were sent to the sites, and the sending

site waited for the results. No specific deadlock

prevention algorithm was implemented due to the small size

and limited nature of the implemented distributed database.

Assumptions

The basic assumption in the design was the existence of

a universal data model, which was needed to convert

internode messages from one type of DBMS to another. At the

V16"

KJ

start of this thesis none existed, but a localized model was

designed in another concurrent thesis. The model must

provide the software link to allow different types of

databases to communicate with one another, and is essential

in developing a working DDBMS in the AFIT DEL.

Another assumption was the existence and functioning of

the proper ISO layers needed for communications in the

network. This was necessary to be able to pass messages and

data between sites in the network. Also, it was assumed

that the network has links to computers with different types

of relational DBMSs available.

Approach

The thesis effort was accomplished in the following

four sequential steps:

1. Requirements Analysis

2. Detailed Design

3. Partial Implementation

4. Analysis of Implementation

The requirements analysis is a description using SADT

diagrams and descriptions of all the software components

necessary to produce a working DDBMS at the AFIT DEL. The

analysis was meant to be as general as possible, usable for

any organization needing to set up a DDBMS. The analysis is

decomposed up to the point where implementation decisions

had to be made for this thesis.

The detailed design finishes out the SADTs of the

17

• - o . ° 4 - . - . - . . - - . • - -

I

requirements analysis, spelling out implementation decisions

made to limit the scope of this thesis, and uses structure

charts and pseudocode to state how to implement those

requirements. The detailed design includes the

simplifications discussed in the Scope section.

The partial implementation placed the DDBMS software on

two communicating nodes in the NETOS system, and implemented

the code derived from the detailed design. The two nodes

had different types of DBMSs to test out the ability to

translate between different types of relational DBMSs.

The analysis of implementation evaluated the advantages

and disadvantages of the partial DDBMS implementation.

Studies were made of response times, accuracy of updating

copied data, accuracy of data returned from queries,

occurrances of deadlocks, and ways to overcome these

problems through future thesis efforts in these areas.

Overview of the Thesis

The format of this thesis follows the approach taken

during the project. Chapter II presents a description of

the Requirements Analysis completed on the necessary parts

of a DDBMS using SADT. Chapter III presents the detailed

design of a DDBMS for use in the AFIT DEL. Chapter IV

describes the methods of coding and testing used in

implementing part of the DDBMS. Chapter V analyzes the

effectiveness of the requirements analysis, design, and

18

implementation parts of the thesis. Chapter VI summarizes

the thesis and recommends action to be taken for future

thesis projects.

19

.

II. REQUIREMENTS ANALYSIS

Introduction

The Requirements Analysis section of this thesis was

accomplished using the Structured Analysis and Design

Technique (SADT) (9:62-64). Appendix B lists the

requirements by number and Volume II of the thesis contains

the SADT Requirements Analysis design. The Requirements

Analysis is set up to be independent of the number of sites

in the DDBMS, the database languages of the individual

sites, the configurations of the network utilized in the

DDBMS, and the hardware characteristics of the individual

sites. First is an explanation of the basic software

requirements for each site in the DDBMS, which is followed

9).f by the decomposition of the requirements.

Basic Requirements

Appendix B specifies the general requirements of the

DDBMS software. The required functions fall in six

categories:

(1) Initialize the DDBMS.6

(2) Maintain status information on other sites.

(3) Reconfigure the DDBMS.

(4) Transmit and receive messages and data to other

sites and to the host computer.

(5) Update arid maintain the ECNDD and LNDD.

(6) Execute queries and updates. If chosen as the

20

6,

central site, executes CNDD and pending update functions.

Initialization of the DDBMS occurs at startup time.

There are two possible conditions: either the site in

question is chosen as the central site, or it is not. If it

is chosen as the central site, it initializes CNDD and

database data at the site, sends status query messages to

the other sites, receives the responses from the sites, and

begins execution of the DDBMS. If the site is not chosen as

the central site, it initializes that site's database data

and returns the central site's initial message when it

receives it.

Each site maintains a status information table on every

other site in the DDBMS. This is necessary for broadcast-

type messages, and also for obtaining remote data or sending

replicated updates. These tables are maintained through

messages about DDBMS malfunctions and reconfigurations

passed between sites.

The DDBMS can be reconfigured in the following ways. A

site can be added to the DDBMS, which involves notifying the

central site and all other sites of the new site. Also, the

data at the added site is updated through pending updates

maintained at the central site. A site can also be deleted,

involving notification of all sites and the beginning of a

pending update file for that site at the central site. The

CNDD and pending update files can be copied from one site to

another, designating the new site as the central site, and,

21

again, all sites would have to be notified of the

transaction. Finally, a mishap could occur in the DDBMS,

including the crash of the central site, the crash of some

other site, or some inactive network lines, and recovery

would have to take place along with notifying all sites as

to what measures were taken.

Messages and data must be transmitted and received at

each site in the DDBMS, across the network and to each host

computer, for it to function properly. The network

operating system is in charge of these functions, though

routines are needed to prepare the messages and data for

transfer.

The three network data directories must be kept current

about the locations of data in the DDBMS. The Local Network

Data Directory (LNDD) contains locations of that site's data

items and indicators for which items are copied. The

Centralized Network Data Directory (CNDD) contains locations

for all DDBMS data items, and exists only at the central

site. The Extended Centralized Network Data Directory

(ECNDD) exists at each site and contains locations of remote

data items previously retrieved from the CNDD.

Each site has software to handle locally- and remotely-

originating queries and updates. Also, if chosen the

central site, it must handle the functions of updating the

CNDD, retrieving locations from the CNDD, and upda+-ing

pending update files.

22

J

Decomposition of the Requirements

Figure 5 shows the three overall functions in this

DDBMS analysis, to initialize the DDBMS at startup time, to

reconfigure the DDBMS in the event of a site crash or an

external command from an operator, and to execute the DDBMS

at the individual sites. The figure is taken from node AO

of the SADT section of Volume II. Each of these functions

will be explained in the following sections.

Initialize DDBMS

"Initialize DDBMS" prepares the individual sites in the

DDBMS for execution at the DDBMS startup time. This

includes choosing a site to hold the Centralized Network

Data Directory (CNDD), needed to indicate the site locations

of the individual data items in the DDBMS. The site with

the CNDD is known as the central site, or the CNDD site.

Also, this routine will prepare other sites for execution in

the DDBMS.

The routine initializes the central site by activating

the CNDD there, determining which sites will participate in

the DDBMS, and, once the initialization is complete, issuing

a ready command to begin execution. Other sites in the

DDBMS are initialized by a command sent to that site and a

contact message from the central site, indicating that the

site will participate in the DDBMS.

23

External
Commands DDBMS

Startup
Command

Initialize DDBMS Ready~
DDBMS Command'

Status
Information

External Network
Reconfiguration Malfunction

Command Data

Cornpleted Initialized

DDDBMS

ReadyT Command
Execute

*Query and Update Commands DDBMS Network

at SitesMessaciges
Exteral Iput aand Data

* Figue 5 SD Acivity"Exectethe DMS

24 frmto

*~~~~~ Ext .w . :

: . -. - - t - • •j - - - -. . .-- - - - . . . i. - . 7' . .- .

Reconfigure DDBMS

"Reconfigure DDBMS" changes the configuration of the

DDBMS during execution. The DDBMS can be reconfigured

either through an operator command, or by data about a

malfunction in the network. Through a command, an operator

may add a non-CNDD site to the DDBMS, delete a non-CNDD site

from the DDBMS, or change the location of the CNDD from one

site to another.

To add a non-CNDD site to the DDBMS, first

communications must be established with the CNDD. Note that

the location of the CNDD is passed to the site through the

command to add a site from the DDBMS operator. The central

site receives the new site's contact message, updates its

list of available sites in the DDBMS, and sends an

acknowledgement message back to the added site. The added

site uses information about network conditions passed from

the CNDD site to update its status information. Once this

is complete, the added site then updates its data with a

pending update file that contains updates to copies of the

4added site's data items transacted at other sites in the

DDBMS while the added site was off-line. The pending update

file is sent over the network from the central site.

4 Finally, a message is sent to all sites to mark the added

site active in their status information tables.

To delete a site from the DDBMS the deleted site sends

a message to all sites to mark the deleted site inactive in

25

m$

their status information tables. The CNDD site begins a

pending update file of updates to data at active sites that

is replicated at the deleted site. The pending update file

is used to update the deleted site when it becomes active

again. Relocating the CNDD moves the CNDD from one site to

another. To accomplish this, the CNDD must be established

at the new site. Then the new site will send a command to

the old site to begin the copying process. All CNDD site

data, including the pending update files, are sent to the

new site over the network. When the copying process is

complete, the status information is updated at both sites,

to indicate the new location of the DDBMS. Also a message

is sent to other sites in the DDBMS to notify them of the

new CNDD location. Note that no transactions may occur

against the CNDD or the pending update files during this

relocating process.

Unlike the three previous operations, recovering from a

network malfunction does not require an external command to

occur. Controlled by a network mishap, it interprets CNDD

and non-CNDD site crashes and down network lines, and does

what is necessary to recover from them. If the CNDD site

crashes, the CNDD is rebuilt at another site using the

available LNDDs for input. If any site crashes, a pending

update file is started for that site. If network lines are

down restricting communication between sites, the network

will be reconfigured so that sites will be able to

26

communicate properly with each other. Finally, messages are

sent to the sites notifying them of the changes in the DDBMS

that have taken place in this routine to recover from the

network malfunctions.

Executing the DDBMS at the Individual Sites

Executing the DDBMS at the individual sites involves

processing all site DDBMS functions other than resolving

malfunctions and reconfiguring the network in the DDBMS.

The SADT description defines the operation at the site that

was selected to be the CNDD site, though only one site can

hold the CNDD at a time. The overall parts of executing the

DDBMS include receiving and transmitting messages and data

from the network lines, updating the status information at a

site about the current network configuration, interpreting

input network messages, and processing the interpreted

network messages at the site.

The network operating system controls transmitting and

receiving messages and data over the network. An incoming

message is read from the network and translated into usable

form by the network operating system. Also, an outgoing

message is packaged properly for transmission over the

network. Data is decomposed into blocks which are

individually transmitted over the network.

Input messages are determined to be either DDBMS status

messages or network messages and local requests. DDBMS

27

"'I ." . " " '.,. [." < < o : ' . i ' .. ' ' - " - : . . , - " ... ' ' '

status messages are used to update a site's information on

the status of other sites, whether each site is active or

inactive. Network messages and local requests are sent to a

routine "Service Network Messages and Local Requests", which

will be described in the following sections.

Service Network Messages and Local Requests

Figure 6 shows the decomposition of the routine. The

types of messages that can be sent to this site are ECNDD

updates, LNDD updates, or regular site requests. The ECNDD

updates are parts of the ECNDD that are copied from changed

parts of the CNDD. "Update ECNDD from CNDD Updates" uses

these updates to keep the ECNDD current with the CNDD.

"Update and Maintain LNDD" changes the LNDD to keep it

, current with the local database format that needs to be

reflected in the DDBMS. The site sends a message to the

CNDD site to update its information about the changed data

item, and only after the site receives an acknowledgement

from the CNDD site, stating that the CNDD is properly

updated, will the local site update the LNDD.

"Service Requests" responds to user query and update

requests by this and other sites in the DDBMS, and also

determines network malfunctions and their causes. Its

function will be more fully described in the next section.

Once a network malfunction is determined by the "Service

Requests" activity, it is deciphered using data from the

available network malfunctions. If it is a non-CNDD site

28
284-

DDBMS ReadxCommand7

ECNDD Update ECNDDI Updated ECNDD
- from CNDD

Updates ECNDD Update AcknowledgementsCNDD i
Update

Messages to ECNDD DDBMS Ready
Command

Interpreted LNDD

Intersite

Outp

Messages ExtMenal Update and I sUpdated LNDD
and Data LNDD UpdateM Maintain

CNDLNDD 2 CNDD Updates

Acknowledgemeits

and Replication DataMSa

CNDD Update Com Oeand
Results ExternaNInput Data Service Output Requests ,

QuerN andD Requests i Messages and Dat
Commands Netw;ork

k Input Request Malfunctions

FigureIa 6 SDT ctiit

Messages and Data R e
External Output"

Messages and Data

__afNtons Network Malfunction,
Malfunctions Messa es t

Non-CNDD Failure Output

~Messages

Decipher and Data
Non-CNDD
Failures Non-CNDD Site

4 Crash Message

Tansmit I Failure {

CNDD FailureI Notice c o_0

Message5 Operator/

Network-Determined
CNDD Site Crash Message

Figure 6 SADT Activity
"Service Network Messages and Local Requests"

29

.. *'. crash, the network malfunction data is passed to the routine

"Decipher Non-CNDD Failures" at the CNDD site to activate

recovery from the malfunctions, a process described earlier.

If it is a CNDD site crash, the malfunction data is passed

to "Transmit CNDD Failure Message" which sends CNDD failure

*. messages to the operator at the site and the next potential

CNDD site in line. Then the operator determines if the CNDD

is to be rebuilt at all, and if it is to be rebuilt whether

it is rebuilt at the next site in line to become the CNDD

site or a site of the operator's choosing.

Service Requests

Figure 7 shows the routines to handle the three types

of requests that can be made to a DDBMS site: local

* requests, remote requests, and CNDD requests if the site

happens to be the CNDD site. In this design, the CNDD is

* located at the site decomposed in this analysis. Were it

not the CNDD site, the CNDD and pending update software

would be turned off. Each of these types of requests are

executed activities which define their functions.

"Service Local Requests" transacts query and update

requests made at the local site. The routine first

determines if the local request is a query or an update.

Execution of local queries and updates are explained in

later sections.

"Service Remote Requests" transacts query and updated

30

" -,'" , - ' . - . ." . "- ." I . i " -

DDBMS

Ready %
Command

External Output
Query and Update Messages and Dat&
Commands Service

Local Remote and CNDD
External input Requests Site Requests

arDataInput Rem e and

Request CNDD Site eOutput
MessagRes Request Results Request
and Data Messages

and Data

Ready
Command t

Service Remote Request,

Remote Requests Remote i Results
and Data Requests

r2

SDDBMS

Ready
Command

CNDD Site Service |CNDD Site
Rquests R eqet Request

at CNDD Site Results

Network
a Ia functions

_ Figure 7 SADT Activity "Service Requests"

31

4 ,. " • ..

requests made by other sites in the DDBMS to the local site.

The routine first determines if the remote request is a

query or an update. Execution of remote queries and updates

are explained in later sections.

"Service CNDD Site Requests" handles CNDD data location

requests, CNDD updates, and pending update requests, that

are made to the site in the DDBMS where the CNDD is located.

Execution of these requests are also explained in a later

section.

Servicing Local Queries

Local queries are queries that originate at the local

site. The routine to execute them first determines if the

local query needs only local host data to complete its task,

a host query, or if it requires data from other sites in the

network, a network query. Execution of host and network

queries is explained in the following paragraphs.

To service a host query, first the query is translated

from the universal database language into the local database

language, if necessary. Next the host query is sent to the

-host computer for evaluation. There, the host computer

evaluates the query, using the host DBMS, and returns the

results to the DDBMS software. Lastly, the query results

are translated, if necessary, from the local data model to

the universal data model and sent to the user.

To service a network query, the query is first

translated, if necessary, from the local database language

32

II

. !.,.

to the universal database language. Next, data locations

are searched for in the ECNDD and the LNDD, and, if not

found, then messages are sent to the CNDD site requesting

locations from the CNDD. Once the locations are determined,

the query is optimized according to its structure and the

DDBMS configuration to allow it to execute as quickly as

possible. The optimization function is not decomposed in

the requirements analysis due to its dependence on a DDBMS

query optimization algorithm. After the query is optimized,

parts are sent to remote locations for evaluation, and the

results are compiled at the local site. There the results

are translated, if necessary, from the universal data model

to the local data model, and sent to the user. Once the

query evaluation is complete, the ECNDD is updated with the

locations of the accessed data that were not currently on

the ECNDD.

Servicing Local Updates

Local updates are updates that originate at the local

site. The first function in evaluating local updates is to

determine the update type. There are two types of updates:

updates to host data that exist at the local site that is

not replicated elsewhere (unique host updates), and other

updates that involve network data (network updates). Each of

the local update types has separate activities.

Executing unique host updates includes first, if

33

necessary, translating the update from the universal

database language into the local database language. Next

the update is sent to the host computer for processing. The

host computer executes the update using its DBMS, and sends

the results back to the DDBMS software. Finally, the

results are shown to the originating user.

Executing network updates first may require translating

the update from the local database language into the

universal database language. Then the data locations are

searched for on the ECNDD and, if not found, the CNDD site

is sent messages requesting the locations. If all the data

is at a single site (a unique network update), the update is

sent to the site and the update is transacted in a method

similar to updating unique host data. If the data is

replicated among multiple sites (a replicated network

update), then a method must be chosen to keep each of the

sites concurrent with one another, and yet keep from causing

a deadlock of the DDBMS. The replicated network update case

is not decomposed since the design is algorithm-dependent.

Once the updates have completed the transactions, any

pending updates (updates to copies of data at sites that are

currently inactive in the DDBMS) are sent to the CNDD site

to be added to those sites' pending update files.

Servicing Remote Queries

Remote queries are queries sent from another site to

the site where this routine is executing. Executing remote

34

-7L . .- - W .~
. . .

queries includes, if necessary, translating the remote

queries from the universal database language into the local

database language. Next, the translated remote queries are

sent to the host computer for evaluation. After the host

computer completes the evaluation, the results are returned

to the DDBMS software. The results are then translated, if

necessary, from the local data model to the universal data

model. Finally, the results are sent back to the

originating site.

Servicing Remote Updates

Remote updates are updates sent from another site to

the site where this routine is executing. Executing remote

updates includes, first, examining a flag on the remote

update to determine if the update is a unique network update

or a replicated network update. Unique network updates are

translated, if necessary, from the universal database

language into the local database language, and sent to the

host computer for evaluation. The results are received from

the host, and sent back to the requesting site. Replicated

network updates are updated using some kind of concurrency-

maintaining and deadlock-preventing algorithm, and due to

its dependency on a specific algorithm, is not decomposed

further in the requirements analysis.

Servicing CNDD Site Requests

CNDD site requests are those messages sent to the site

35

.- . -..- . , . . -..- ..- ,. - ... ,.. . . . , , . ,

that contains the CNDD and the pending update files for

inactive sites. The routine first determines the type of

CNDD site request, and calls the appropriate routine. CNDD

data location requests are executed by collecting the CNDD

data required by a site, and sending that data to the site.

CNDD updates are executed by matching the update against the

CNDD data, updating the CNDD, and sending an update

acknowledgement back to the sending site. Pending update

requests are matched with the pending update file for the

site that is currently inactive in the DDBMS, and the

request is added to that site's pending update file.

Summary

The Requirements Analysis for a DDBMS system is given

using the SADT decomposition technique. Overall modules

include initializing the DDBMS at startup time,

reconfiguring the DDBMS during execution, and executing the

DDBMS software at the individual sites. Various algorithm-

specific functions, including the query optimization and the

concurrency control functions, were not decomposed to

maintain a general character to the requirements analysis.

This requirements analysis provides the basis for the

detailed design of the AFIT DEL DDBMS.

ii

~36"

4 S

. . ..

III. DETAILED DESIGN

Introduction

This chapter presents a detailed design of a DDBMS

based on the requirements analysis of the previous chapter.

The first task of the design was to make implementation

decisions on the requirements to limit the scope of the

. design in this thesis. To accomplish this, three additional

SADT diagrams were generated, along with the associated data

dictionary and indexes. This information is in the

beginning of Volume III of this thesis, the detailed design

document.

Following the completion of all the requirements

analysis, a detailed design was made using structure charts

i and associated process and parameter data dictionary

entries. This design is located after the SADT diagrams in

- Volume III. The structure charts show the basic structure

of the software modules to be implemented. The data

dictionary entries show the details of implementation with

the process entries giving the algorithms, descriptions, and

inputs and outputs of modules, and the parameter entries

giving the descriptions and data characteristics of data

items passed between modules.

The idea of the design was to be as general as

possible, but to limit the design in the specified areas

according to the implementation decisions made. The

generality comes from the fact that a large proportion of

37

0

the design is applicable in most DDBMS configurations, and

the implementation decisions were made to limit the amount

of software design and code written for the query

optimization and concurrency control of updates.

Further Decomposition of Requirements

There were three areas where deliberate limitations

were placed on the requirements of the DDBMS. Those areas

are:

(1) Optimizing network queries

(2) Handling replicated network updates at the

originating site

(3) Handling replicated network updates at the remote

sites

There are several complicated DDBMS query optimizing

schemes available, such as Wong (14:50-68), but to make the

design simple enough to be implemented in a short amount of

time, shortcuts were necessary. Instead of determining the

optimum locations for executing queries, the algorithm

merely optimizes the relational structure of the query, gets
0

the locations of the data items needed to solve the query,

-" and partitions the query by sending a query part to the

first availible location and receiving perhaps a very large

0
relation for a result.

The problem of controlling the concurrency of updates

in a DDBMS is also very complicated, as Thomas shows (12:88-

38

-0

94). To simplify the process, instead of using a

complicated voting scheme that was described by Thomas, the

locations of the data in the update are determined and the

update is sent to each of the sites. Results are received

from those sites as they come in, waiting until a specified

timeout period is over. Then the ECNDD is updated with the

locations of the data in the update.

At the remote site that receives a replicated network

update, instead of voting and waiting for results, the

update is translated, if necessary, from the universal

database language into the local database language, sent to

the host computer for the transaction and the results of the

update received from the host computer are sent back to the

originating site.

DDBMS Structure Chart Design

Beginning here and continuing for the rest of the

chapter is a text description of the structure chart design

and the accompanying data dictionary descriptions that are

in Volume III. Copies of the software from this design will

reside at each site in the DDEMS with the CNDD site software

shut off at all sites except the CNDD site. The design is

set up so that it could be implemented on any computer, but

includes the design restrictions stated in the further

decomposition of the DDBIMS requirements earlier in this

chapter.

The highest level diagram of the structure charts is

39

shown in Figure 8 under the title "Execute DDBMS at Site N".

In this design, Site N is referred to as the site where that

particular software module is executing. There are three

main functions for this module: initialization of the DDBMS

at this site under "Initialize DDBMS at Site N", retrieving

the next input message through "Get Next Message", and

creating a process for that message and placing it in the

process queue under "Create and Queue Process". Each of

these will be described in the following paragraphs.

Initialize DDBMS at Site N

Site N can be chosen as either the central site or as

another remote site in the DDBMS. If chosen as the central

site, first the database data and the CNDD data at Site N

are prepared for interaction with the DDBMS. Next, input

and output queues are set up for incoming

and outgoing messages that deal with both the host computer

and the network. Once the queues are established, each of

the sites expected to be in the DDBMS entered by the user at

startup time are sent a query message making sure they are

active. The return messages are retrieved through "Get Next

Message", to be discussed in the following section, and the

status information table is updated concerning the status of

all DDBMS sites. Then, each active site is given a command

enabling it to begin DDBMS execution.

If Site N is chosen as a remote, or non-CNDD, site, a

40

r
Execute
DDBMS

at Site N
0

DDBMS i 4Next N ext
Startup/ Message Message

Command6

Ec

Initialize Gt Create
9) DDBMS at Next and Queue

Sit: N Message Process
1 23

Figure 8 Structure Chart for Process
"Execute DDBMS at Site N"

slightly different sequence of events occurs. First, the

database data at Site N is prepared for execution. Next,

the input and output queues are prepared in the same manner

as in the central site case. The query message to Site N

from the central site is retrieved through "Get Next

Message", and is used to update Site N's status information

41

table concerning the location of the central site. Finally,

"Get Next Message" is called again to retrieve a command

from the central site indicating that the DDBMS is ready for

execution.

Get Next Messaj

The purpose of "Get Next Message" is to retrieve the

highest priority input message from the input network and

local queues. The routine checks the network and local

queues for the message with the highest priority, removes

that message from the proper queue, and returns the message

to the calling routine. After DDBMS initialization, this

message is always sent to "Create and Queue Process".

Create and Queue Process

This routine creates a process for an input message

received from "Get Next Message" and places that process in

* a process queue. The operating system process scheduler

determines from the priorities of the processes in the

process queue which one to execute next. The execution of

the next process is shown in Figure 9 under the title

"Execute Process".

The message contained in the executed process is

0 interpreted by "Interpret Network Messages" to determine if

the message is a request to reconfigure the DDBMS, or some

other type of request made to Site N. If the message is a

reconfiguration request then the routine passes the message

42

to "Service Reconfiguration Requests". Otherwise, the

message is passed to "Service Network Messages and Local

Requests". Both of these routines are explained in the

following sections.

Service Reconfiuration Requests

There are three kinds of reconfiguration requests

possible, local reconfiguration requests (those originating

at Site N), remote reconfiguration requests (those

originating at a site other than Site N when Site N is not

the CNDD site), and CNDD site reconfiguration requests

(those from another site to Site N when Site N is the CNDD

site). There are also four possible reconfigurations to the

DDBMS: adding a site, deleting a site, relocating the CNDD

site data from one site to another, and recovering from a

network malfunction. First, the request type (local,

remote, CNDD site) is determined, then the function of the

message is determined, and, finally, the function is carried

out.

Servicing Local Reconfiguration Requests

Local reconfiguration requests come from the host and

are designed to add Site N to the DDBIS, delete Site N from

the DDBMS, relocate the CNDD site data from another site to

Site N, and to rebuild the CNDD at Site N because of the

failure of the CNDD site.

To add Site N to the DDBMS, first Site N sends a

43

-

.- Execute
Process

3.1

Network
Messages

Next and Local
Message f Requests

in .
Process
Queue

nterpreted Network
Message Malfunctions

Network

Reconfiguration
Malfunctions

Requests

Interpret Service Service Network
Network Reconfiguratior Messages and
Messages Requests Local Requests

3.1.1 3.1. 3.1.3

Figure 9 Structure Chart for Process
"Execute Process"

message to the CNDD site, whose location is input by the

user, indicating Site N's addition. Next, the CNDD site

sends a return message, acknowledging Site N's addition.

44

The return message contains information on the status of

other DDBMS sites, which Site N uses to update its status

information table. Finally, Site N receives a pending

update file from the CNDD site containing updates to data at

Site N replicated elsewhere in the DDBMS that occurred while

Site N was inactive.

Deleting Site N is much simpler, and only requires two

steps. First, Site N's status information table is updated

with its own deletion from the DDBMS. Following that, a

message is sent to all active sites to mark Site N inactive

in their status information tables, and to the CNDD site to

begin a pending update file for Site N.

To relocate the CNDD site data from some other site to

Site N requires first that a storage area be set aside for

that data. When that is complete, Site N sends a message to

the old CNDD site indicating that Site N is ready to receive

the CNDD site data. When the data is sent, Site N copies

the data into the reserved data area. When the copying

process is complete, Site N sends a message back to the old

CNDD site stating that the process is complete. The status

information table is updated at Site N indicating that Site

N is now the CNDD site, and Site N sends a message to all

active sites to update their status table likewise.

Rebuilding the CNDD at Site N after a CNDD site crash

involves constructing a new CNDD from LNDDs at active DDBMS,

and updating status tables in the DDBMS to reflect the

45

w.

change. First, messages are sent to all active DDBMS sites

to send their LNDDs to Site N. When they are all received,

Site N builds the CNDD from these LNDDs. The status table

at Site N is updated to reflect that Site N is now the CNDD

site, and a message is sent to all active DDBMS sites to

update the status tables as well. Unlike the other local

reconfiguration requests, this request can be made from

another network site, as well as Site N.

Servicing Remote Reconfiguration Requests

Except for a request to send LNDD data to a site where

the CNDD is being rebuilt, all remote reconfiguration

requests are used just to update Site N's status information

table about events at other sites in the DDBMS. For an LNDD

request message, Site N's LNDD data is copied to a temporary

file, formatted for transfer, and sent to the site where the

CNDD is being rebuilt.

Servicing CNDD Site Reconfiguration Requests

These procedures are executed only if Site N is the

CNDD site. There are four possibilities of the CNDD site's

role in the reconfiguration of the DDBMS: processing a site

addition message, processing a site deletion message,

relocating the CNDD data from Site N to another site, and

recovering from a malfunction in the DDBMS other than a CNDD

site failure.

To process a site addition message, first a return

46

..

message is sent from Site Nback to the added site. Next,

Site N updates its status information table indicating that

the site is active. Finally, the pending update file for

the site is sent from Site N to that site.

In evaluating a site deletion message, Site N

initializes a pending update file for the site about to

become inactive. It also updates Site N's status

information table indicating that the deleted site is

inactive.

The process of relocating the CNDD data from Site N to

another site involves receiving a message from the new site

indicating it has a place prepared for the CNDD data and

pending update files once the message is received, and

updating Site N's status information table indicates that

the new site is now the CNDD site when a message is

retrieving stating that the CNDD copying process is

complete.

The last possible task for a CNDD site reconfiguration

command is one to recover from a network malfunction that

does not involve a CNDD site failure. If a site crashes in

the DDBMS, a pending update file is started for that site at

Site N. If some network lines are down, this routine

establishes communication paths around those lines. Any

recovery activity is noted in the Site N status information

table and sent to all active sites by a message.

47

Service Network Messages and Local Requests

The routine to handle all incoming messages except

reconfiguration requests is "Service Network Messages and

Local Requests", and is decomposed as shown in Figure 10.

The overall function of the routine is to determine the type

of the incoming message and send the message to "Update

ECNDD from CNDD Updates", "Update and Maintain LNDD", or

"Service Requests". Then any network malfunctions are

processed by either "Decipher Non-CNDD Failures" or

"Transmit CNDD Failure Message".

Some input messages are updates to data on the ECNDD at

Site N that was just updated at the CNDD. The ECNDD needs

to be kept current to prevent it from giving out faulty data

locations. In "Update ECNDD from CNDD Updates", these

updates are transacted and acknowledgements are sent back to

the CNDD site acknowledging the transaction.

Other input messages are LNDD updates, either input

externally from a user or input from the CNDD site where

replicated data at Site N's LNDD was updated. In either

case the update is made to the LNDD and results are sent to

the host computer at Site N to notify the user and keep the

local database format current. For LNDD updates that

originate at Site N, updates are sent to the CNDD site and

acknowledgements are received from the CNDD site after the

CNDD is updated.

All other input messages are sent to "Service

48

Service Network
• Messages and

Local Requests
3.1.3

NDD Site
Failure

CNDD
Update

Messages
to ECNDD Exter-

nal
LNDD
Up-
dates

Network
LNDD Malfunc-

Updates tions
from

Net- CNDD
work
Mal- CNDD
func- Update
tions Acknow-ledgements

Update ECNDD Non-CNDD Transmit
from CNDD Failure CNDD Failure
Updates Request Malfunc- Message

3.1.3.1 MessageJ tions 3.1.3.5

Update and Service Decipher
Maintain Requests Non-CNDD

LNDD Failures
3.1.3.2 3.1.3.3 3.1.3.4

Figure 10 Structure Chart for Process
"Service Network Messages and Local Requests"

Requests", which handles queries, updates, associated return

_ messages, and CNDD site requests. The execution of this

49

m°~

routine is explained in the following section.

Network Malfunctions can come from "Service

Reconfiguration Requests", "Update and Maintain LNDD", and

"Service Request" routines. There are two types of network

malfunctions: those in which the CNDD site crashes and

those in which it does not. Non-CNDD failure messages are

interpreted by "Decipher Non-CNDD Failures" for the actual

problems, and a message is sent to the CNDD site with the

problem. CNDD site failure messages are sent by "Transmit

CNDD Failure Message" to the host computer at Site N and to

the site that is next in line to be the CNDD site.

Service Requests

The routine "Service Requests" is decomposed as shown

in Figure 11. It sends locally-originating updates and

queries and results of the updates to "Service Local

Requests". Remote updates and queries and results of the

updates from the host computer are sent to "Service Remote

Requests". Finally, all requests to the CNDD site when Site

N is the CNDD site are sent to "Service CNDD Site Requests".

In "Service Local Requests", there are routines for

both local queries and local updates. Likewise in "Service

Remote Requests" there are routines for both remote queries

and remote updates. And in "Service CNDD Site Requests"

there are routines to handle requests to the CNDD for data

locations, updates to the CNDD, and requests to add a

50

.

Service
Requests

3.1.3.3

Query 9
and Update
Commands etwork4~alfunc-

tions

Remote
Update

Resultsemt Remote

Requests
Network

Malfunctions

CNDD SiteUpdate Update Requests

Results/ Results
from / from
Host Host

Service
Service Service Requests
Local Remote at CNDD

Requests Requests Site
3.1.3.3.1 3.1.3.3.2 3.1.3.3.3

Figure 11 Structure Chart for Process
"Service Requests"

51

pending update to a pending update file for an inactive

site. All of these will be explained in the following

paragraphs.

Servicing Local Queries

The two types of local queries are those that require

only data from the host computer (host queries) and those

requiring data from other DDBMS sites (network queries).

Host queries are first translated, if necessary, from the

universal database language into the local database

language. Then they are packaged into messages and sent to

the host computer for evaluation. After completion, the

results of the query return from the host are translated, if

necessary, from the local data model into the universal data

model, and are sent as a file to the host computer.

Network queries are translated, if necessary, from the

local database language into the universal database

language. Locations of the queries are derived from the

ECNDD and LNDD, if possible, or sent for and received from

the CNDD. Next, the queries are optimized for their

structure and decomposed according to locations of required

data by a partitioning algorithm. The query parts are sent

to the remote locations and the results are stored into

files as they arrive. The query result files are combined

according to the original query into one result file. The

file is translated, if necessary, from the universal data

model into the local data model, and sent to the host

52

A

. . . . ' i 2 .' " - - .. .', " . . - 'i " " -" ,i % - -ll~i ;-- i i.- ' ''-'. . - ,. .i .''2 . . ." ". -. ' - ..

computer. Also, the ECNDD is updated with the data

locations derived from the CNDD.

Servicing Local Updates

The two general types of local updates are those that

update only data at the host computer (unique host updates),

and those that update data at sites other than the host

computer (network updates). Unique host updates are

translated, if necessary, from the universal database

language into the local database language. Then the update

is sent in a message to the host computer. A return message

provides the results of the update which are sent back to

the host computer.

Network updates are translated, if necessary, from the

local database language into the universal database

language. Next, the update locations are derived from the

ECNDD, LNDD, and, if needed, the CNDD. If the transaction

updates unique data, then it is packaged into a message and

sent to the location, the results are received from that

location, and the ECNDD is updated if the data location was

derived from the CNDD. If the transaction updates

replicated data, then the updated data is sent to all sites

where it is replicated, the results are returned from those

sites, and pending updates are generated for those sites

which are inactive and are sent to the CNDD site. Also the

ECNDD is updated with the CNDD-derived data locations. The

53

results, either unique or replicated, are lastly sent to the

- host computer.

Servicing Remote Queries

Remote queries are translated, if necessary, from the

universal database language into the local database

language. Then they are packaged into messages and sent to

the host computer. The query results from the host computer

are translated from the local data model into the universal

data model and sent back to the originating site.

Servicing Remote Updates

There are two types of remote updates: those whose

data is unique at Site N, and those whose data is replicated

elsewhere in the DDBMS. In this implementation they are

both executed in the same manner. The updates are

translated, if necessary, from the universal database

language into the local database language. Next, the

updates are packaged into messages and sent to the host

computer. Then the results from the host are sent in a

message back to the originating site.

Service CNDD Site Requests

There are three types of CNDD site requests: CNDD data

location requests, CNDD updates, and pending update

requests. When a data location request is received, first

the CNDD is scanned and the required data locations are

retrieved. Then the data locations are formatted and sent

54

. '1 - "

as a file back to the originating site.

Updates to the CNDD are from sites whose LNDD was

recently updated. First, the updates are run against the

CNDD. Next, the updates are sent to ECNDDs and LNDDs with

changed data. If the input message is an acknowledgement

from a site whose ECNDD has been updated, then a timeout is

shut off for that site; otherwise if a timeout does occur,

network malfunctions are reported.

Pending update requests are used to add the pending

update contained in the request to the appropriate pending

update file for the inactive site. Following this, results

of the update are sent in a message back to the originating

site.

Message Formats

Formats for messages sent between DDBMS sites and

-between the host and the DDBMS processor are located in

Appendix C. They are listed in alphabetical order and

* contain priorities for their execution order. The general

levels of priority are, first, reconfiguration messages,

second, the routine data handling messages, and, third,

acknowledgement messages. Further decompositions of

priorities are discusse] in Appendix C.

Summary

A detailed design of a DDBMS is presented in this

chapter. Implementation restrictions were made to the

55

S

requirements analysis through further SADT diagrams and the

requirements set forth were interpreted into structure

charts and associated data dictionary entries. With the

completed design the implementation of two communicating

DDBMS nodes could begin.

I56

4

r 56L

4

IV. PARTIAL IMPLEMENTATION

Introduction

A part of the DDBMS structure chart design discussed in

the previous chapter was implemented. Two LSI-11

microcomputers in the LSINET of AFIT were chosen as host

interfaces to hold the DDBMS software that would obtain

query data from two hosts: an S-100 computer executing the

dBASE II relational DBMS and a VAX 11/780 running the UNIX

operating system with INGRES, also a relational DBMS. A

relational DBMS language known at AFIT as Roth's Relational

DBMS (10:110-135) was used for all input queries, playing

the role of a universal language. No data updates of any

kind can be sent over the network under this implementation.

The structure charts and data dictionary that explain which

modules were implemented are in Volume IV of this thesis,

Implementation Design.

First, this chapter discusses the architecture of the

computers configured in this small network to test out the

DDBMS software. Next, techniques of translating queries

from Roth's Relational DBMS to dBASE II and INGRES are

discussed. Following this are module implementation

decisions made to limit the number of modules implemented as

a part of this thesis to conform to time constraints. The

actual implementation of the DDBMS software is then

discussed, followed by a summary of activities occurring

during the implementation.

57

User
System

NETOS
Central
System

System System

Figure 12 DDBMS Implementation Architecture

Implemented Architecture

Figure 12 shows a pictoral representation of the

architecture to implement the DDBMS architecture. The

computer architecture chosen for this partial implementation

consists of an S-IOO microcomputer running dBASE II; a VAX

11/780 running the UNIX Operating System and the relational

58

DBMS INGRES; two LSI-11 microcomputers (System A and System

K) connected in a network via the Network Operating System

(NETOS) (4:1-19) where System A is connected to the S-100

and System K is connected to the VAX; a third LSI-11

computer, System B, which acts as the central system in

NETOS through which all network messages are passed; and a

final "user" LSI-II computer where queries originate and

where the results appear.

Only transfer and execution of queries has been

accomplished in this implementation. System A and System K

will have identical software except for the commands sent to

the respective dBASE II and INGRES systems to translate and

execute a query and the software to handle multiple-site

queries. The systems will contain algorithms to update and

retrieve data only from the ECNDD and the LNDD, and the

ECNDD is assumed to have all network location data. All

input queries originate at the user system and are formatted

in Roth's Relational DBMS language (10:122-124) by a program

that prompts the user for relation names, attribute names,

and conditions. A small explanation of this language is in

Appendix D. Queries are sent to either the S-100 computer

with dBASE 11, or the VAX computer with INGRES. System A

and System K are connected via the central system in NETOS,

and send queries to each other to retrieve data from the

host computer (the S-100 or the VAX 11/780) of the other

site.

L

59

V ..

The S-100 computer and System A constitute the first

DDBMS site. Queries from the user site to System A and

those from System K are, in turn, sent to the S-100 computer

for computation. At the S-100 computer input queries are

translated by a routine written by Gunning (3:1-23) from

Roth's Relational DBMS language to dBASE II. The results

from dBASE II are returned to System A.

The VAX 11/780 computer with INGRES and System K

constitute the second DDBMS site. Queries from the user

site to System K and those sent to System K from System A,

are sent, in turn, to the VAX with INGRES which translates

the query from Roth's Relational DBMS Language to INGRES,

executes the query, and returns the results to System K.

Translator Modules

There are two main translation modules involved in this

partial implementation of DDBMS software. The first module

is one that translates Roth's Relational DBMS queries into

dBASE II command files that can execute on the S-100

computer. This module was written by Gunning in December

1983 as a part of an introductory database course at the Air

Force Institute of Technology (3:2-3). The second module is

a version of the dBASE II translator modified as part of

4 this thesis effort to be used by INGRES under UNIX running

on the VAX 11/780 computer. Since the Gunning translator

could only handle queries and not updates, it was decided

early in the implementation phase to direct the main effort

60

, ~~~~..... b...........- ° . ••...°..... •.-:...'.•. ° o••.° •---

1-k. lkr -. 7'

.- .toward transferring only queries and query results by the

4 DDBMS software.

Figure 13 shows the overall design of both translators:

first, to read in a query; second, to break out the

relations, attributes, and conditions; and third, to execute

- the query. In the Roth-dBASE II translator, the Roth

- -. Relational DBMS queries are read as input to the program and

are segregated by query type (JOIN, PROJECT, SELECT,

DIFFERENCE, UNION, INTERSECTION, PRODUCT and DIVIDE

commands). Each query type has its individual variables

stored into a dBASE II command file, and that dBASE II

command file is executed with the results being passed back

• .to the originating site.

The Roth-INGRES translator took the basic structure of

the code from the dBASF II translator, but limited the

. translation capabilities to JOIN, SELECT, and PROJECT

queries to simplify operations. Instead of sending the

. variables to dBASE II command files, the Roth-INGRES

translator uses these as input for the QUEL command language

*(15:EQUEL:1-5) that is imbedded in code written in the "C"

programming language in a combination known as EQUEL. The

.- .- variables are accepted into the EQUEL statements and are

0 executed, with the results returned to System K.

Module Implementation Decisions

Due to the large nature of the DDBMS design and the

61

uQuery
Translator

Query C Query,

QQuery Q rr

PartssRead in Break-Out Execute

Query Query Query
Parts

Figure 13 Translator Design

small amount of time with which to accomplish this partial

implementation, only a small portion of the actual structure

chart design from Chapter 3 was implemented. The main idea

was to limit the implementation to only queries and query

results being passed over the network in the DDBMS. The

LNDD and the ECNDD were implemented as flat files updated by

a screen editor. The LNDD contains only data names and

associated databases located at the host site, and the ECNDD

contains relation names, database names, and network site

locations. The ECNDD is assumed to have data on all

relations in the DDBMS.

All mechanisms to recover from DDBMS crashes were left

62

• I. . . , . , ° . . - , , , .. - . - . . ° • . . , , . . • . °

out of this implementation along with all maintenance of

pending update files. Also, all data updates were left out

of this implementation due to the lack of an effective

update translator and the inherent difficulty in keeping

updates occurring concurrently. The structure charts and

data dictionary for the modules that were coded and tested

under this project are in Volume IV of this thesis, and will

be discussed in the following sections.

Implementation Design

The implementation design was much smaller that the

original design, and some modifications and extensions were

made to deal with the constraints of the computers in the

implementation architecture. A structure chart of the

first-level modules of the DDBMS software is shown in Figure

14. The main executing module calls "Get Next Message",

" - which waits for the next query coming into the system,

either from a user site or from another DDBMS site through a

call to the "recv file" module to receive a file over the

network. This module is in ISO Layer 6 of NETOS (4:17).

The "Get Next Message" module copies the incoming query into

a buffer that is passed back to the main executing module

and over to "Service Requests".

"Service Requests" handles all incoming query messages.

This module retrieves the source from the message, services

the query by calling "Service Queries" and obtaining the

filename of the result file, and sends the result file back

63

...................... . . .

Execute
')DBMS

0

Next Next
Messages Mssage

Get Next Service
Message Requests

12

Figure 14 "Execute DDBMS"

to the site indicated by the original source.

The module "Service Queries" is decomposed as in Figure

15. First, the type of query is found in the module

"Determine Local Query Type". In this module, relations are

extracted from the incoming query and compared with those on

the LNDD and ECNDD files, and locations of those relations

are returned along with a flag indicating whether the query

needs only data from the local site (a host query), or from

other sites (a network query). Host queries are handled

under "Service Host Queries" and network queries are handled

under "Service Network Queries".

64

.•• , ,

Service
Queries

2.2

Next Next Next
Message Message Messag Query

Results
Filename

Locations

oations

/ e Query
ry Results

Indicator Filename

10

Determine Service Service
Local Query Host Network
Type Queries Queries

2.2.1 2.2.2 2.2.3

Figure 15 "Service Queries"

Service Host Queries

The module "Service Host Queries" is decomposed into

two modules, "Send Host Queries to Host" and "Receive Host

Query Results from Host", in Figure 16. The module "Send

Host Queries to Host" first gets a filename from a global

variable, incrementing the filename in a routine. Then, it

writes the query part of the incoming message to the file by

65

* . .*'., *.- .~ *. * * * *

Service-
Host

Queries2.2.2

Next Query
Message / Results

Filename

Send Host Receive Host
Queries Query Results
to Host from Host

2.2.2.1 2.2.2.2

Figure 16 "Service Host Queries"

that filename. Finally, it sends the query file to the host

computer using appropriate UNIX or CPM commands. "Receive

Host Query Results from Host" gets a filename for the query

result file, sends a command to execute the query at the

host computer, and uploads the query results from the host

computer, again using appropriate UNIX or CPM commands.

Service Network Queries

The module "Service Network Queries" is also decomposed

into two modules, "Send Query Parts to Remote Locations" and

"Compile Network Query Results", and is shown in Figure 17.

66

, - -. . . -. D°%

0I

Service
Network
Queries

2.2.3

Next
Message

Next Query
Message Results

Multiple Filename
/Locations

(System Aonly)

9 e Multiple
Locations Locations Source

(System A only) (System
Dest i nationA only)

Send Query ompile Network
Parts to Re- Query Results

mote Locations
2.2.3.1 2.2.3.2

Figure 17 "Service Network Queries"

"Send Query Parts to Remote Locations" gets a filename,

builds a remote query message in the file by that filename,

and sends that query message to the DDBMS site with the

required information.

In this implementation, only JOIN, SELECT and PROJECT

SOcommands are possible. SELECT and PROJECT commands need

only one input relation, and, since they are network

queries, that relation lies completely at another DDBMS

*0 site. But a JOIN requires two input relations, and there is

67
0["

a possibility that these two relations can be spread over

two sites. "Send Query Parts to Remote Locations" at

System K, connected to the UNIX VAX, sends all multiple-site

JOINs to System A, connected to dBASE II on the S-100.

"Send Query Parts to Remote Locations" on System A builds a

SELECT for the relation that is missing on the S-100 and

sends that SELECT to System K. Both routines call the

"send-file" function of ISO Layer 6 in NETOS (4:17).

Further multiple-site processing is discussed in the next

sections.

"Compile Network Query Results" gets a filename and

receives the results of a network query into a file by that

filename through the "recv file" function of ISO Layer 6 in

NETOS (4:17). The System K version merely returns the

resulting filename as the final results. However, the

System A version goes through the following process: if the

original query was a SELECT, PROJECT, or a single-site JOIN,

then the first filename is returned as the final results.

But, if the original query is a multiple-site query, then

the filename is passed to "Compute Network Query Results" to

JOIN together the output from the SELECT with a relation at

the S-100.

0
Compute Network Query Results

"Compute Network Query Results" is implemented only on

System A and its decomposition is shown in Figure 18. The

68

68

0i

* .* * * *. ~ * . * .i

* . .. 2

. -

ompute Networ
Query Results

2.2.3.2.3

Relation
Filename/

6 Rela- Query
tion f Results

File- Filename
name a

Data
Prelim- Formats

Query6
Results_

.4 Filename
Data~

Formats Next
Mes-
sage

Relation
Filename

Get Build Local Send Service
Filename Relation Relation Host

Files to Host Queries
1.1 2.2.3.2.3.2 2.2.3.2.3.3 2.2.2

Figure 18 "Compute Network Query Results"

reason that it appears only on System A is that it is much

simpler and less time-consuming to create a relation on the

S-100 using dBASE II than using the UNIX VAX and INGRES.

First, a filename is obtained using the same "Get
4

69

4

• z - ' ° - . - • ,. .• - - -• . °- *- : .. -.m • - - .- , . . -

A

Filename" routine that has been described before. This

filename is used to store a resulting relation from the

routine "Build Local Relation Files", which converts the

SELECT results described previously from INGRES format to

dBASE II format. This new file is sent to the S-100 and

loaded into dBASE II by "Send Relation to Host". Finally,

"Send Host Queries" is executed to process the original

JOIN, since both relations are now on the S-100 computer,

and the results appear in the file identified by the Query

Results Filename.

4 Sumxary

A partial DDBMS was implemented in the AFIT Digital

Engineering Lab using four LSI-11 computers in the LSINET,

an S-100 computer using the CPM Operating System and running

dBASE II, and a VAX 11/780 using the UNIX Operating System

running INGRES. One LSI-11 computer was a "user" input

terminal, where queries were entered and results received,

one was the central system for the Network Operating System

(NETOS), and the last two (System A and System K) were DDBMS

interfaces to the host computers, S-100 and the VAX,

respectively. Queries input from the user terminal were in

Roth's Relational Database language and were translated by

software modules at the host computers into dBASE II and

INGRES for execution. DDBMS software was implemented to

route queries to locations where the requested data

4 appeared. All modules discussed in this chapter have been

70

4 S

coded and tested successfully, within some constraints,

which will be discussed in the following chapter. I

71"

- Ii

I °I

17

4 "

V. TESTING AND EVALUATION

Introduction

The software written during the implementation phase

was tested to determine its performance accuracy. Cases

were devised to test both the quality of the data that was

output and the speed of execution. Only the software

written for this thesis was tested thoroughly, though

modules such as the Roth-dBASE II translator and the NETOS

ISO Layers had to perform successfully for the

implementation to succeed.

This chapter is divided into three parts. First, test

cases for the Roth-INGRES translator will be discussed, as

will the test results. Second, test cases for the DDBMS

input user site that test all of the DDBMS software modules

will be discussed. Third, results of stopwatch tests on the

test cases of the second part will be graphed and the

results discussed.

Testing of the Roth-INGRES Translator

The modules of the Roth-INGRES translator were tested

module-by-module for correctness of output for given input.

Then, the overall translator was tested by setting up files

with input queries and running these through the translator.

The translator breaks out the parts of the query from the

Roth input, and executes an equivalent INGRES statement,

printing the results on the screen. Figure 19 shows the set

72

a) JOIN supply, parts WHERE pnum = pnum GIVING newrel

b) JOIN parts, supply WHERE quan > pnum GIVING newrel

c) SELECT ALL FROM parts WHERE ((pnum < 7) and (pnum > 2))

GIVING newrel

d) SELECT ALL FROM parts WHERE ((color = black) or (color =

gray)) and weight > 500 GIVING newrel

e) PROJECT supply OVER snum, pnum, jnum GIVING newrel

f) PROJECT parts OVER pnum, pname, color GIVING newrel

Figure 19 List of Roth Statements Used
for Testing the Roth-INGRES Translator

of queries that was used to test the translator using the

existing relations "parts" and "supply" from the INGRES

database "demo". The results of the queries satisfactorily

show the accuracy of the translator. It should be

emphasized here that the translator can only handle SELECT,

PROJECT and JOIN statements, and, in a SELECT statement, the

user cannot specify the value of a character field whose

elements begin with numbers.

Testing of Overall DDBMS Modules

In the production of the DDBMS software running the

LSI-11 computers in the Digital Enginerring Laboratory, each

module was again individually tested and connected together

for a system test. For this testing, relations were chosen

on the S-100 and VAX systems. Figure 20 shows the formats

of the LNDDs and the ECNDDs. The relations "parts" and

73

......................... -. -

System A System K

parts demo shipment demo
supply demo bolts demo

nuts demo

a) LNDD Files

System A System K

parts demo LSK parts demo LSK
supply demo LSK supply demo LSK
shipment demo LSA shipment demo LSA
bolts demo LSA bolts demo LSA
nuts demo LSA nuts demo LSA

b) ECNDD Files

(Figure 20 Entries for LNDDs and ECNDDs
at System A and System K

"supply" on the VAX, and the relations "shipment", "bolts",

and "nuts" on the S-100 were used in the system testing.

The LNDD at System K, connected to the VAX, contained

entries for "parts" and "supply", and the LNDD at System A,

connected to the S-100, contained entries for "shipment",
+0_

"bolts", and "nuts", as shown in Figure 20a. Both LNDDs

contained the database name "demo" for each entry since only

one database was used in th 6 implementation. Both sites

had identical ECNDDs, as shown in Figure 20b, containing

three-character NETOS location identifiers for the relations

and the database used was again "demo" for each relation.

74

0

-i i:i: i ! * i J. - .L U. : - -- i -- t -t

a) JOIN supply, parts WHERE pnum = pnum GIVING newrel
(one site INGRES JOIN)

b) JOIN supply, shipment WHERE snum = snum GIVING newrel
(multiple-site JOIN)

c) JOIN bolts, nuts WHERE type = type GIVING newrel
(one site dBASE II JOIN)

d) SELECT ALL FROM parts WHERE ((color = black) or (color =
gray)) and weight > 500 GIVING newrel

(INGRES SELECT)

e) SELECT ALL FROM bolts WHERE (pnum > 30) and (quan > 300)
GIVING newrel

(dBASE II SELECT)

f) PROJECT supply OVER snum, pnum, jnum GIVING newrel
(INGRES PROJECT)

g) PROJECT nuts OVER pname, type GIVING newrel
(dBASE II PROJECT)

Figure 21 List of Queries Used in DDBMS Testing

Once the LNDDs, the ECNDDs, and the data relations were

properly in place, full scale testing could begin. The list

of queries used in the testing is in Figure 21. Note that

SELECT, PROJECT, and JOIN queries were chosen so that one of

each could be done with data residing at a particular site,

and also a multiple-site JOIN is executed. Each of these

queries was sent to both System A and System K. A

deficiency was noted in translating a SELECT statement using

the Roth-dBASE II translator. The translator produced a

command file which generated a syntax error for a SELECT

condition involving a non-numeric data field. The results

of these queries were evaluated to be correct.

75

4° . o - ° - • ° . - • . - . - . ° . o . . . - . . • • . . . ° . . • °

Z...% . ..'.° .°'. "o. • .". "- ' .°.° ° '-..... "...-..........-.............-........-...

." -. Figure 21 a)

b)

c)

d)

e)

f)

g)

1 2 3 4 5 6 7 8 9

Time in Minutes

Figure 22 Graph of Total Execution Times
for DDBMS Queries

Stopwatch Tests of DDBMS Test Cases

Figure 22 is a graph of the execution times of the

queries from Figure 21 run in the DDBMS. All queries in

this implementation are sent to System A to simplify

processing of multiple-site joins. Note the relative

slowness of the queries that required data from the UNIX VAX

(frequently overloaded) compared to those that did not

require UNIX VAX data. Also note that queries requiring

data from more than one computer ran longer than those which

required data from only one computer. Finally, note that

queries requiring data from the other computer ran longer

_ than those just needing data from that site's host computer.

76

° . ° . • . ,• ° °

Summary

"" The modules involved with the Roth-INGRES translator

and the overall DDBMS software were thoroughly tested

according to the specifications in this chapter. These

queries produced satisfactory results. The queries were

timed for their speed of execution and the results were

reported. From the design, implementation, and testing of

this DDBMS partial implementation, came many ideas for

future projects, which will be discussed in the next

chapter.

7

-.-- . - * . .

VI. RECOMMENDATIONS AND CONCLUSIONS

Introduction

The previous chapters brought to light many of the

problems with this initial design of a DDBMS for use in the

AFIT Digital Engineering Laboratory. Many of these problems

can be worked out by projects in individual, concentrated

areas of focus. This type of focus was impossible while

trying to design an entire DDB14S. Each of these projects

could become a complete thesis project, part of a thesis, or

a class project at AFIT.

The first part of this chapter provides some

conclusions about this DDBMS. Important points are brought

out about major facts that were learned during the research.

0 Also, major points of DDBMS software will be reemphasized.

The second part of this chapter will introduce possible

future DDBMS project topics. First, an update translator is

needed in the DEL. Second, the functions of the CNDD and

maintaining pending updates need to be implemented. Third,

DDBMS update software should be implemented to include an

update concurrency algorithm. Fourth, a DDBMS query

optimization algorithm is required to direct query parts to

optimum sites in the DDBMS. Fifth, software should be

implemented to reconfigure the DDBMS when needed and in case

of possible catastrophe. Sixth, more sophisticated

translators are essential to handling more complicated

relational DBMS statements and in the conversion of

78I
,) .: -.- • - . '.i - .i ' ; :, . .i .- " -" '.i-' i--,i-': i~ -.. - . 'i'" i i. -., --'>

,.. .- statements from a network or hierarchical DBMS language to a

relational one. Seventh, algorithms should be implemented

to handle input, process, and output queues to transfer

messages between DDBMS sites. Finally, once the above

projects are finished, the system needs to be converted to

be heterogeneous, that is, to handle multiple types of DBMS

languages as inputs.

The chapter will end with some final comments on this

project. Overall conclusions will be brought forth and

major problems will be highlighted.

Conclusions About the DDBMS Research

This thesis effort barely scratched the surface of a

huge and widely expanding distributed database research

area. It provided a design basis for the projects mentioned

earlier in this chapter to continue research at AFIT in this

area. The field is very wide and demanding, too large to

cover completely in one thesis.

Many major DDBMS areas need to be researched further,

and those will be expanded later in this chapter. Also the

AFIT Digital Engineering Lab needs more modern network

processors than the LSI-11 computers to implement any kind

of complicated DDBMS algorithms, preferably multi-

programming systems. Research in this area will probably

take many years but could, given the proper resources,

produce something useful to the distributed database

79

0

* - :6" * 7 -- *

research field.

Update Translators

One of the things that prevented the implementation of

update software in the DDBMS during this project was the

lack of an update translator. A suggested type of update

translator could parallel the query translators already

implemented between the Roth language and INGRES, and the

Roth language and dBASE II. The translators could start

with the EDIT commands of Roth (10:119-121), and devise

appropriate commands in INGRES and dBASE II to accomplish

these tasks. Later these translators could be modified into

something that could handle updates in a heterogeneous DDBMS

environment.U)
CNDD and Pending Update Software

The structure chart design in Chapter 3 and Volume III

of this thesis goes into a great deal of detail about the

method of performing CNDD updates, handling CNDD data

location requests, and maintaining a file of pending updates

for each inactive site in the DDBMS. An overall design for

this software could begin with the diagram in Figure 23. A

more implementation-specific set of structure charts could

be written based on the design done in this thesis. Then,

perhaps a node in the NETOS network could be chosen as the

CNDD site, and this software could handle requests for the

CNDD site as written in the design.

80

4-P

Service
CNDD Site
Requests

0

Service CNDD Service Service
Data Location CNDD Pending Up-

Requests Updates date Requests
1 2 3

Figure 23 Design of CNDD and Pending Update Software

Update Concurrency Algorithm

Thomas (12:88-94) discusses an update concurrency

algorithm that is mentioned in Chapter 1 of this thesis.

The design of update DDBMS software in this thesis could be

expanded to include such items as timestamping and voting in

a concurrency-control algorithm. A small one of these

algorithms could be implemented under NETOS in the Digital

Engineering Laboratory. This area is very active in the

distributed database research field, and perhaps a research

could find newer, more advanced algorithms in the

literature.

81

. .-. .-. . -., . , ,

., - - . -- o . . , i . o. . o.. - ,

DDBMS Query Optimization Al orithm

To be at all useful, the DDBMS query design of this

thesis must be expanded to include optimizing by

partitioning input queries, efficient routing of the query

parts in the DDBMS, and the final computation of query

results. Figure 24 shows the modules that could be found in

an optimization scheme.

Partitioning using Roth's language is rather straight-

forward since no input statement can have more than two

input relations and missing relations can be requested by

4 SELECT statements for the whole relation. Any language

other than Roth's could require a much more complicated

algorithm to implement it.

The routing algorithm for query parts would involve

determining which DDBMS site might be available to process a

query at any given time, and send a query part to the

optimum site. It would also take into account communication

bottlenecks and try to ship the query around such

bottlenecks. In the NETOS network, this could involve

checking ports for availability and sending a query with

data at more than one site to a particular site that was

free instead of one which was busy.

Computing the final query results from queries in

Roth's language involved just loading the results of SELECTs

to get needed relations, and executing the c.ciginal

statement. This is very similar to the implementatici of

82

•4: : i ::

PPRts

12

Figure 24 Design of DDBMS Query Optimizer

this function in this thesis project. However, using any

language more complicated could be quite a challenge indeed,

sending numerous relations and queries around the network

until a result was final.

DDBMS Reconfiguration Software

Large sections of Volume II and Volume III of this

thesis were devoted to an in-depth design of what would be

needed to reconfigure the DDBMS if a site was added, a site

was deleted, the CNDD were to be moved to another site, or

the CNDD site were to unexpectedly crash. The diagram for

this function appears in Figure 25. The design is fairly

well intact and, with minimal changes, could be implemented

83

AaSI

9

Reconfigure
DDBMS

Site to Network
SDDBMS Malfunction

14

Delete Non- Relocate
CNDD Site CNDD
from DDBMS

2

Figure 25 Design for DDBMS Reconfiguration Software

without too much difficulty. In any usable DDBMS, this

software is absolutely necessary for day-to-day operations.

More Sophisticated Translators

For any usefulness to come out of the DDBMS software,

there must be more usable and efficient translators to

different types of DBMSs. The current translators, the

Roth-dBASE II and the Roth-INGRES translators, are slow and

incomplete. These translators should be completed, and

other, more efficient translators should be designed and

implemented. Translators could be written from more

84

S

difficult languages than Roth's if another language were to

be used as a universal language in the DDBMS.

Queue Processing A orithms

Queues in DDBMS processing could work to store input

messages from other DDBMS sites to the one where the

software is running, to store processes containing input

messages waiting to be started by a system process

scheduler, and to store output messages waiting to be sent

to another DDBMS site. These queues would allow for a much

greater throughput of messages and data in the DDBMS,

keeping most sites busy if the influx of requests were

great.

The input queue could line up messages as they come

into a system instead of putting the sending site into a

wait state while the receiving site finished with the

previous message. It would receive a message from another

site, copy the message into the queue, then, when the

priority of that message becomes the highest in the queue,

it would be released. The message would be executed if it

were a reconfiguration request, or sent to a process queue

if it were some other kind of request.

The process queue holds messages until they are

released by a process scheduler to be executed by the DDBMS

software. To implement this queue, it is assumed that the

DDBMS software is running on a multi-programming computer.

4 The process executes, and any output messages are sent to an

85

RD-Ai5i 694 DESIGN AND IMPLEMENTATION OF THE DIGITAL ENGINEERING 2/2
LABORATORY DISTRIBUT._(U) AIR FORCE IN5T OF TECH

LAS RIGHT-PATTERSON AFB OH SCHOOL OF ENGI_ J G BUECKMAN

UNCLl SSIFIED DEC 84 AFIT/GCS/ENG/84D-5 F/G 9/2 N

EIIIIIIIIIIumIiIIImIIIIIIh
imiIIEEEEIImI
EEEEE..IMEMMEMEEMEM

777 7 7 7 7 7- 7- 7- -1- T7-f - -e.-vt T-, - - INC.

111.0 LQ 328 12.

Jill- i~132

1111 1.1 I-C.W2

Jffjf ~L. .2 Iff~ 111111.6

MICROCOPY RESOLUTION TEST CHART

NAIONAL BUR[AU OF STANDAPDS-1911

output queue.

The output queue holds messages until it is their turn

to be sent over the network to their destination. Thus, the

output software will not be tied up with a single message. I
The output queue together with the input queue makes the

process of passing messayes over the network much less time

consuming.

Heterogeneous DDBMS Software

The ultimate goal of the AFIT DDBMS project is to

create a working, fully operational, heterogeneous DDBMS in

the Digital Engineering Laboratory. After most of the

homogeneous projects are finished, work can begin converting

the homogeneous DDBMS to one that is heterogeneous, where

different types of DBMSs will be connected. The areas that

will be large problems are translators from network and

hierarchical languages into a relational language that will

be considered the universal language. Also, the translation

of the results back to a form usable by network and

hierarchical databases will be quite a challenge. Added to

this, work will have to take place for mapping of the data

entities of network and hierarchical systems, and vice

versa. It will take a number of thesis efforts before a

heterogeneous DDBMS can be fully operational.

Final Comments

Future study should concentrate on the update

86

-- ~ ~ ~ ~ 0 v T 7A VU . -W,---I-

concurrency, the query optimization, the DDBMS

reconfiguration, and the CNDD site software. Also, various

translators will be needed to communicate between the

various types of DBMSs. AFIT has a good start as far as

hardware for this area by having LSI computers in the NETOS

network, but will require much more powerful, multi-

programming computers to handle both user and DDBMS software

on the same system. Hopefully, years of research at AFIT

will provide a greater understanding of the distributed

database field.

. 8

6

87

Appendix A -- Glossary of Terms for DDBMS Design

Acknowledgements - Messages sent to another site in the

network acknowledging the reception of some message from

that network site.

Central Site - Site in the DDBMS that maintains the CNDD and

pending update files, as well as performing regular DDBMS

functions. Same as CNDD Site.

CNDD - Centralized Network Data Directory, contains

locations of all data items in the DDBMS.

CNDD Site - Site in the DDBMS that maintains the CNDD and

pending update files, as well as performing its regular

DDBMS functions. Same as Central Site.

CNDD Site Failure - The system failure of the CNDD site,

causing reproduction of the CNDD site data at another site

in the DDBMS.

Command - A message that originates at a host computer,

input by a user.

Data Locations - Numerical representations of sites in the

DDBMS where data items are located.

DBMS - Database Management System, software module executing

at host computers that organizes and retrieves data.

DDBMS - Distributed Database Management System, software

modules executing with network protocol modules to combine

databases together over network lines into a larger, single

database.

Distributed Database - A configuration of database sites in

88

, ..- ,... . . --

a network joined by DDBMS software into one, larger

database.

ECNDD - Extended Centralized Network Data directory, a

directory at every site in the DDBMS that contains a list of

locations of data items that are updated from locations

received from the CNDD.

External - Items entering the DDBMS software from outside

sources, such as user or operator input.

File - Collection of data in an organized fashion either

kept at a DDBMS site or sent between sites.

Host - The computer for a site which contains the local

database and DBMS that interfaces with the DDBMS.

Host Queries - Queries that originate at the host computer

that require only data from the host's database.

LNDD - Local Network Data Directory, a directory at every

DDBMS site that lists data items that are located on the

host's database.

Local - Items in the DDBMS relating to or originating at the

host computer for a particular site.

Location - A numerical representation for a particular site

in the DDBMS.

Message - A fixed-length, formatted piece of data that is

transmitted from one site to another in the network.

Network - Software and communication lines that connect

various host computers so that the computers can send and

receive messages and files.

89

Network Malfunctions - Events that occur to sites and

communications lines in a network that cause them not to

function properly.

Network Queries - Queries originating at the host computer

that have data at sites other than the host computer in the

DDBMS.

Network-Determined - An event in the DDBMS that is handled

by DDBMS software without user intervention.

Non-CNDD Site - A site in the DDBMS other than the CNDD

site.

Output - Refers to messages and data sent to the user at a

site that are the end products of actions taken by the

DDBMS.

Pending Update - An update to data at a site in the DDBMS

that has been accepted at a site where a copy of the data

has occurred and is not yet transacted at an inactive site.

Pending Update File - A file of pending updates maintained

at the CNDD site for any inactive site in the DDBMS.

Queries - Requests input by users for data at DDBMS sites

that are written either in a local database language or the

universal database language.

Query Results - Results of execution of a DDBMS query. The

results can either be in the form of data which is the data

on the host database that matches the parameters of the

query, or a null file indicating that no data could be found

to match the parameters.

90

6

%7o . -

Reconfiguration Requests - Messages in the DDBMS from users

of the DDBMS or the DDBMS software that either request a

change in the configuration of the DDBMS or notify sites

that a change has already occurred.

Remote - Any data that originates at a site other than the

site of reference.

Replicated Network Updates - Updates to data that is

replicated at two or more sites in the DDBMS.

Request - A message that requires an action from a DDBMS

site.

Site - A combination of the processor that executes DDBMS

software and the host computer that are tied into the DDBMS.

May be either one or two computers.

Site Crash - A DDBMS site becoming inactive due to a failure

in the hardware at the site.

Status Information - A table at each DDBMS site indicating

which sites are active and inactive in the DDBMS. Same as

Status Information Table and Status Table.

Status Information Table - A table at each DDBMS site

indicating which sites are active and inactive in the DDBMS.

Same as Status Information and Status Table.

Status Table - A table at each DDBMS site indicating which

sites are active and inactive in the DDBMS. Same as Status

Information and Status Information Table.

Timeout - A software mechanism to wait for a return messaage

from a site where a message has been sent. The length of

91

V-§1 .i.ii ~ zL. ~* ~

'--. time to wait is arbitrary.

Translated - Converted from one database language or data

model to another.

Unique Host Updates - Updates to data that exists only at

the originating site's host computer.

Unique Network Updates - Updates to data that exists at a

single site other than the originating site.

Update Results - Messages indicating either if an update is

successful, or if there is some problem with the update.

Updates - Messages to update data in the DDBMS.

92

.- - - - - --- .

Appendix B

Requirements for the

Digital Engineering Laboratory

Distributed Database Management System

1. Initialize the DDBMS at startup time.

a. Initialize if central site.

1. Initialize data at central site.

2. Query sites given in startup command for status.

3. Evaluate responses from sites.

b. Initialize if not central site.

1. Initialize that site's data.

2. Return the central site's query.

* 2. Maintain status information table on every site in DDBMS

- table indicates whether each site is active or inactive.

3. Reconfigure DDBMS through the following actions:

a. Add a site to DDBMS.

b. Delete a site from DDBMS.

c. Relocate the CNDD from one site to another.

d. Recover from a DDBMS malfunction.

4. Transmit and receive messages and data between sites in

the network, and between the network and the host computer.

5. Update and maintain network data directories.

a. LNDD - Contains locations of data items for the

site where it resides.

b. CNDD - Contains locations for all data items in the

93

"," DDBMS. The CNDD exists only at the central site.

c. ECNDD - Exists at each site and contains locations

of data remote to the site where it resides. The locations

were previously retrieved from the CNDD.

6. Service incoming requests.

a. Service local queries and updates.

b. Service remote queries and updates.

c. If chosen the central site, service CNDD site

requests.

1. Update the CNDD.

2. Retrieve locations from the CNDD.

3. Update pending update files.

94

LO

Appendix C

Formats for Messages Transferred in the DDBMS

Description

This appendix contains three message formats. The

first two formats are those messages which fit into the

standard NETOS 32-character format, and the third format are

those messages which do not fit into 32-character and are

transferred in the DDBMS by way of files. The messages in

each format are ordered alphabetically.

The following is a list of priorities of messages in

the DDBMS:

i. Commands to bring up the DDBMS.

2. Commands to start execution and notify sites of a

change in location of the CNDD.

3. Commands to rebuild the CNDD if the CNDD site

crashes.

4. Commands to recover from a non-CNDD site crash.

5. Commands to add or delete a site from the DDBMS.

6. Updates to the LNDDs and the CNDD.

7. Commands to send a file and acknowledge an ability

to receive a file.

8. Updates to database data and results of the

updates.

9. Queries against database data and results of the

queries.

10. Acknowledgements, ECNDD and pending updates.

95

4i : : :i i~ i : :i ii i :;: '

Network Message

Char 0 - STX

1-3 - Three character message type, given below

4-6 - System ID at destination computer

7-9 - System ID at source computer

10 - Priority, given below

11-30 - Unused

31 - ETX

Message Message Type Priority

Added Site Message ASM 5

Central Site Return Message CSR 5

CNDD Established Message CEM 3

CNDD Update Acknowledgements CUA 10

Copy Finished Message CFM 3

DDBMS Ready Command DRC 2

Deleted Site Message DSM 5

ECNDD Update Acknowledgements EUA 10

File to Be Sent FTS 7

Okay to Send File FOK 7

Initial Central Site Contact Message ICM 5

LNDD Request Message LRM 3

Site N Startup Command SNS 1

Site Status Query Message SQM 1

Site Status Return Message SRM 1

96

0

Host Message

Char 0 - STX

1-3 - Three character message type, given below

4-6 - System ID at site involved

7 - Priority, given below

8-30 - Unused

- 31 - ETX

Message Message Type Priority

External Add Site Command EAS 5

External Delete Site Command EDS 5

External Relocate CNDD Command ERC 5

197

97

0 : " i - _.0 , ,, . _ _ . . , . --.. .- . -•: .

File Message

Char 0 - STX

1-3 - Three character message type, given below

4-6 - System ID at destination computer

7-9 - System ID at source computer

10 - Priority, given below

i-N - Data (N = length of the file)

Message Message Type Priority

Central Site Startup Command CSS I

CNDD Data Location Requests CDL 7

CNDD Failure Notice to Operator CFN 3

CNDD Update Messages to ECNDD CUM 10

CNDD Updates CUP 6

External LNDD Updates ELU 6

External Recovery Command ERC 4

Host Query Message HQM 9

Local Queries LQR 9

Local Replicated Network Update LRN 8
Message

Local Unique Network Update Message LRU 8

LNDD Updates from CNDD LUC 6

Output Replicated Network Update ORN 8
Results Message

Output Unique Network Update OUN 8
Results Message

Pending Update Requests PUQ 10

Recovered DDBMS Message RDM 3

98

V.~ S V "
;, :. ; ,/.: . ". " -" • . " , " " " '-" " - "-" ". " " ' "

Message Message Type Priority

Remote Query Message RQM 9

Remote Query Requests RQR 9

Replicated Network Update Messages RNM 8

Replicated Network Update Results RNR 8
Message

Update Results from Host URH 8

Updates to Network Data UND 8

Updates to Unique Host Data UUH 8

Unique Host Update Message UHM 8

Unique Host Update Results Message UHR 8

Unique Network Update Message UNM 8

Unique Network Update Results UNR 8
Message

99I

Appendix D

Retrieve Statement - Roth Relational Database System

Introduction

The Roth Relational Database System is a pedagogical

tool for use by students at the Air Force Institute of

Technology in studying database technology. The database

system has several options including the System Options, the

Define Options, the Edit Options, the Retrieve Options, and

the Boss Option (10:111). Each of these options are

discussed in detail in the Roth thesis (10).

The option of main concern to this thesis are the

Retrieve Options (10:122-124). Inside the Retrieve Options

section is a list of retrieve commands implemented in the

Roth language. These commands are those produced at the

user terminal by a program implemented as part of this

thesis. All of the retrieve commands will be discussed, but

note that only the PROJECT, SELECT, and JOIN operations are

implemented in this thesis.

Union of Two Relations

The format is:

UNION relationl, relation2 GIVING relation3

where the first two relations must be union-compatible;

that is, they have the same number of attributes and the ith

attribute of one relation must be drawn from the same domain

as the ith attribute of the other relation. Relation3 will

100

4

[- - "" " - '.. - . " - ""- - " , .- . -. " ' " " " ' . - .,

acquire the attribute names of relationl.

Example: UNION shippart, part GIVING upart

Intersection of Two Relations

The format is:

INTERSECT relationl, relation2 GIVING relation3

where all restrictions under UNION apply.

Example: INTERSECT shippart, part GIVING upart

Difference of Two Relations

The format is:

DIFFERENCE relationl, relation2, GIVING relation3

where relation3 = relationl - relation2. All

restrictions under UNION apply.

Cartesian Product of Two Relations

The format is:

PRODUCT relationl, relation2 GIVING relation3

where attribute names in relation3 will be the same as

those in relation 1 and 2 except that duplicate names will

be prefixed by the name of the relation it came from.

Example: PRODUCT shippart, part GIVING upart

Join of Two Relations

The format is:

JOIN relationl, relation2 WHERE attrl op attr2 GIVING

relation3

where attrl is in relationl, attr2 is in relation2, and

101

- .. ,-

op is=, , or >. The JOIN operation is a subset of the

cartesian product where the condition of membership is

specified in the WHERE clause. All restrictions under

PRODUCT apply.

Example: JOIN part, shipment WHERE part# = part# GIVING

shipment-description

Project of a Relation Over a Subset of Its Attributes

The format is:

PROJECT relationl OVER attrl, attr2, . . . attrN

GIVING relation2

where attributes not specified in the OVER clause will

be eliminated and any duplicate tuples will be eliminated.

Example: PROJECT shipment-description OVER color, supply#

GIVING c-and-s

Select of a Subset of Tuples from a Relation

The format is:

SELECT ALL FROM relationl WHERE condition GIVING

relation2

where condition is a boolean prodicate on the

attributes of relationl of the form al AND/OR a2 AND/OR a3

op is =, <, or >. The expression may be fully parenthesized

to indicate the proper precedence of the operators, but if

not the AND has precedence over OR. One or more blanks or

commas must be between each part of the command except that

102

:m%

the left parenthesis may be flush against an item to its

right, and the right parenthesis may be flush against an

item to its left.

Example: SELECT ALL FROM part WHERE location = Miami GIVING

parts-in-Miami

Divide a Binary Relation by a Unary Relation

The format is:

DIVIDE relationl BY relation2 OVER attrl GIVING

relation3

where relationi is a binary relation, relation2 is a

unary relation, and attrl is an attribute of relationl

defined on the same domain as the attribute in relation2.

Relatiou3 will be a unary relation with an attribute from

Srelationl that is not attrl.

Example: DIVIDE ps# BY s# OVER supply# GIVING p#

103

J

), .::.: ;- * : , :.-* -:: - . :: , : ;::,.' . .- '. . .-"

APPENDIX E

Publication Article

104

Report on

DESIGN AND IMPLEMENTATION OF THE

DIGITAL ENGINEERING LABORATORY

DISTRIBUTED DATABASE MANAGEMENT SYSTEM

Introduction

A database is a large collection of data that is

organized for rapid retrieval and updating. Software that

controls data manipulation and structure in a database is

known as a database management system (DBMS). Databases

that reside on a single computer are known as centralized

databases, while databases that are spread over several

computers in a network are known as distributed databases.

The software that manages tasks occurring in a distributed

database is a distributed database management system

(DDBMS).

A distributed database can provide a great enhancement

to a multi-site organization, but at a significant cost in

complexity. Users can access data on several computers,

many more users can run transactions, and data integrity is

maintained over several sites simultaneously. Serious

problems to overcome in a distributed database include

keeping data on each site concurrent, preventing data

deadlock, and running queries and updates efficiently.

This paper will first cover the basic approaches to

distributed databases and the interfaces of computers with a

105

k -° • -.. . ° - % - - - . - - . - - ' ---------

- z- -

I

DDBMS, and the data directories needed for a DDBMS.

Following this will be a list of objectives set for the

thesis project resulting in this paper. The objectives were

for the requirements analysis, detailed design, and

implementation phases of the DDBMS project, each of which

will be described briefly. Finally, the results of the

implementation and some conclusions will be discussed.

Approaches to Distributed Databases

There are three approaches to distributed database

management systems. The integrated, homogeneous, and

heterogeneous models are shown in Figure E-1 (5:7-10). In

the integrated model, each DBMS is designed as being

connected to the others in the network, and can access them

without data translation, as shown in Figure E-la. This

strategy reduces the useful CPU time at each computer, and

requires memory to store the data exchange process, two

reasons for its lack of popularity.

The homogeneous model removes the network data exchange

module from memory at each computer, and installs a

communication software module between each computer and the

rest of the network, as shown in Figure E-lb. In this model

each computer must support the same DDBMS as the others.

This is the most common method of implementing distributed

databases.

The heterogeneous model can link different DBMSs

106

to

DBMS DBMS DBMS
12 . .. n

COMMUNICATION

CHANNEL

(a)

DBMS DBMS DBMS
12 . . .i

(b)

DBMS DBMS DBMS
12 . . .n

fCOMMUNICATION -COMMUNICATION I COMMUNICATION1
MODULE MODULE JMODULE

ITRANSLATOR TRANSLATOR j TRANSLATOR
*MODULE MODULE JMODULE

COMMUN ICATION
CHIANN EL

(c)

Figure E-1 (a) Integrated Architecture
(b) Hlomogeneous Architecture

* . (c) lieterogeneous Architecture (5:10)

107

together through a distributed database. Since the DBMSs

are incompatible, a translator software module is installed

between the communication module and the network

communication channel, as in Figure E-lc. This is the most

flexible model, but also the most complicated to implement.

A universal database model would greatly enhance the

usability of a heterogeneous model, since software could be

written to translate from any type of DBMS language to the

universal model, and from the universal back to the original

language. Also, all network-wide functions in the DDBMS

could be written in that one universal language.

Interfaces to the DDBMS

The basic interfaces to the DDBMS are the interfaces to

the local DBMS, the network, the data directories, and the

users of the DDBMS. The diagram for the interrelations of

these interfaces is shown in Figure E-2. Some kind of

translators are needed for the DDBMS version of queries and

updates to be converted to those of the local DBMS language.

An interface is needed directly to a user to give him the

results of a DDBMS query or update. Interfaces to the

network are needed to transmit messages from one DDBMS site

to another concerning site status, queries, updates, voting,

and other DDBMS transactions. Finally, directory interfaces

are needed to allow the DDBMS software to search at the

proper sites for required data.

108

OTHER LOCAL I4

HOS HOST DBMS
PROCESSES

Figure E-2 Interfaces in the DDBMS

DDBMS Data Directories

The three data directories used in this design of a

DDBMS are the Local Network Data Directory (LNDD), the

Centralized Network Data Directory (CNDD), and the Extended

Centralized Data directory (ECNDD). The LNDD is a directory

which contains names of data entities that reside at the

109

DDBMS site where the LNDD is located. The CNDD contains

locations for all data entities in the DDBMS. The ECNDD is

a subset of the CNDD and contains CNDD entries of data

entities used at a particular site whose locations were

previously retrieved from the CNDD.

ObjecLives of the Thesis

This DDBMS research took place at the Air Force

Institute of Technology (AFIT) to fulfill the thesis

requirement for a master's degree. The research was

intended to provide a foundation for future thc.-is projects

at AFIT in distributed database research. This thesis

project consisted of four basic phases: a DDBMS

requirements analysis, a detailed design based on the

U requirements analysis, a partial implementation of the

detailed design, and an analysis of the partial

implementation.

Requirements Analysis

The required functions for the DDBMS fall into six

basic categories:

(1) Initialize the DDBMS.

(2) Maintain status information on other sites.

(3) Reconfigure the DDBHS.

(4) Transmit and receive messages and data to other

sites and to the host computer.

(5) Update and maintain the ECNDD and LNI)D.

110
"'ii

K1

(6) Execute queries and updates. If chosen as the

central site, executes CNDD and pending update functions.-J

4These requirements were transcribed into SADT diagrams

(9:62-64) to graphically display the analysis. The analysis

was intended to be independent of any hardware, language, or

specific algorithm.

The highest level function in the requirements is the

module "Execute the DDBMS", shown in Figure E-3. It is

decomposed into three modules. "Initialize DDBMS" prepares

the individual sites in the DDBMS for execution at startup

time. "Reconfigure DDBMS" changes the configuration of the

DDBMS during execution by adding a site, deleting a site,

moving the location of the CNDD site, or recovering from an

unexpected malfunction in the DDBMS. "Execute DDBMS at

Sites" processes all DDBMS site functions other than those

accomplished by "Reconfigure DDBMS". These include

processing incoming messages and producing a proper response

as output.

An input message to a DDBMS site can be updates to that

site's LNDD or ECNDD, or can be another type of message

collectively called a request. This request can be one that

originates at this local site, a local request, one that

originates at another DDDMS site, a remote request, or one

to this site if it happens to be the CNDD site, a CNDD site

request. The routines to handles these requests is shown in

Figure E-4.

11 .I • .4

External
Commands DDBMS

Startup
Command

Initialize DDBMS ReadY
DDBMS Command

1

Status
Information

External Network
Reconfiguration Malfunction

Command Data

Completed Initialized
Pending Reconfigure Pending Uonat
Update File DDBMS File

2

Status, nformatin

DDBMS
Status ,

DDBMS-

Ready
Command

Execute
Query and Update Commands DDBMSNetwork

eat Sites s

External In1put Data 3 Data

Status
Information

External
Output
Messages
and Data

. Figure E-3 SADT Activity "Execute the DDBMS"

112

-4 . .. ' ' .' " " i ' . " ' • . - . ." " " .-- -i . ., . ' > . i ' , ' '" -,- ... -

"Service Local Requests" transacts query and update

requests made at the local site. "Service Remote Requests"

transacts query and updated requests made by other sites in

the DDBMS to the local site. "Service CNDD Site Requests"

handles CNDD data location requests, CNDD updates, and

pending update requests, that are made to the site in the

DDBMS where the CNDD is located.

Detailed Design

This phase of the project was a detailed design of a

DDBMS based on the requirements analysis of the previous

chapter. The idea of the design was to be as general as

possible, but to limit the design in the specified areas

according to the implementation decisions made. The

generality comes from the fact that a large proportion of

the design is applicable in most DDBMS configurations, and

the implementation decisions were made to limit the amount

of software design and code written for the query

optimization and concurrency control of updates.

The highest level diagram of the structure charts is

shown in Figure E-5 under the title "Execute DDBMS at Site

N". In this design, Site N is referred to as the site where

that particular software module is executing. There are

three main functions for this module: initialization of the

DDBMS at this site under "Initialize DDBMS at Site

N", retrieving the next input message through "Get Next

113

r.S
: :i:i i~i- , -. i-. .: ~ i : _ i " " """ "-" " " :" :" ' ' ' -

DDBMS
Ready"" Command

External Output
Query and Update Messages and Data
Commands Service

Local Remote and CNDD
External Input Requests Site Requests
Data adaNetwork

Malfunctions
Input Remote and
Request CNDD Site Output
Messages Request Resultsk. Request
and Data e Mesae\ and Data

DDBMS
Ready
Command

LL

DDBMS

Ready
Command

Requests Requests Request
at CNDD Site Results

Network
Malfunctions

Figure E-4 SADT Activity "Service Requests"

114

N:1

Executej
DDBMS

at Site N
0

DDBMS ~Next Next
Startup Message Message

Command

Initialize [Get Create
DDBMS at Next and Queue
Site N Message Process

12 3

Figure E-5 Structure Chart for Process
"Execute DDBMS at Site N"

Message", and creating a process for that message and
placing it in the process queue under "Create and Queue

Process".

Processes in the DDBMS queued under "Create and Queue

Process" are released for execution in the DDBMS software by

115

4

- -- .S -. . -, , -• •

Service
Requests

3.1.3.3

Query 9
and Update A
Commandsp NetworkMalfunc-

tions

Remote Q
Update
Results

Remote
Requests

Network
Malfunctions

CNDD Site
Update Update Requests
Results Results
from from
Host Host

Service
Service Service Requests
Local Remote at CNDD
Requests Requests Site
3.1.3.3.1 3.1.3.3.2 3.1.3.3.3

Figure E-6 Structure Chart for Process
"Service Requests"

a system scheduler. The messages in these processes can be

116

A •

4 -

requests to reconfigure the DDBMS arid other data transaction

requests. Each of these are handled by separate routines.

The routine to handle data transaction requests is shown in

Figure E-6. As in Figure E-4 of the Requirements Analysis,

the routine is decomposed into "Service Local Requests",

"Service Remote Requests", and "Service Requests at CNDD

Site". These routines handle, as in Figure E-4, locally-

originating updates and queries, remotely-originating

updates and queries, and CNDD site requests, respectively.

Partial Implementation

A part of the DDBMS structure chart design discussed in

the previous chapter was implemented. Two LSI-11

microcomputers in the LSINET of AFIT were chosen as sites to

V) hold the DDBMS software that would obtain query data from an

S-100 computer executing the dBASE II relational DBMS and a

VAX 11/780 running the UNIX operating system with INGRES,

also a relational DBMS. A relational DBMS language known at

AFIT as Roth's Relational DBMS was used for all input

queries. No data updates of any kind can be sent over the

network under this implementation.

Figure E-7 shows a pictoral representation of the

architecture to implement the DDBMS architecture. The

computer architecture chosen for this partial implementation

consists of an S-100 microcomputer running dBASE II; a VAX

11/780 running the UNIX Operating System and the relational

DBMS INGRES; two LSI-11 microcomputers (System A and System

117

-. < .
User

System

NETOS
Central
System

copteSystem ,wihat stecnrlSystem i

Figure E-7 DDBMS Implementation Architecture

O K) connected in a network via the Network Operating System

(NETOS) (4:1l'~ where System A is connected to the S-100

and System K is connected to the VAX,- a third LSI-l11

computer, System B, which acts as the central system in

NETOS through which all network messages are passed; and a

final "user" LSI-11 computer where queries originate and

where the results appear.

118

- -~ - ZS. 17-~~ 7 7- --

Only transfer and execution of queries has been

accomplished in this implementation. System A and System K

will have identical software except for the commands sent to

the respective dBASE II and INGRES systems to translate and

execute a query and the software to handle

multiple-site queries. The systems will contain algorithms

to update and retrieve data only from the ECNDD and the

LNDD, and the ECNDD is assumed to have all network location

data. All input queries originate at the user system and

are formatted in Roth's Relational DBMS language (10:122-

124) by a program that prompts the user for relation names,

attribute names, and conditions. Queries are sent to either

the S-100 computer with dBASE II, or the VAX computer with

INGRES. System A and System K are connected via the central

system in NETOS, and send queries to each other to retrieve

data from the host computer (the S-100 or the VAX 11/780) of

the other site.

There are two main translation modules involved in this

partial implementation of DDBMS software. The first module

is one that translates Roth's Relational DBMS queries into

dBASE II command files that can execute on the S-100

computer. This module was written by Gunning in December

1983 as a part of an introductory database course at the Air

Force Institute of Technology (3:2-3). The second module is

a version of the dBASE II translator modified as part of

this thesis effort to be used by INGRE'S under UNIX running

119

,- .'2 " -. I , . - , " " . . _.". . . . m ~ i m ... i i .i [,'l m - ' .

Son the VAX 11/780 computer. Since the Gunning translator

could only handle queries and not updates, it was decided

early in the implementation phase to direct the main effort

toward transferring only queries and query results by the

DDBMS software.

Due to the large nature of the DDBMS design and the

small amount of time with which to accomplish this partial

implementation, only a small portion of the actual structure

chart design was implemented. The main idea was to limit

the implementation to only queries and query results being

- passed over the network in the DDBMS. The LNDD and the

ECNDD were implemented as flat files updated by a screen

editor. The LNDD contains only data names and associated

databases located at the host site, and the ECNDD contains

relation names, database names, and network site locations.

The ECNDD is assumed to have data on all relations in the

DDBMS.

All mechanisms to recover from DDBMS malfunctions were

left out of this implementation along with all maintenance

* of pending update files. Also, all data updates were left

out of this implementation due to the lack of an effective

update translator and the inherent difficulty in keeping

*= updates occurring concurrently.

The final implementation could effectively create

queries at the user site, process them at the DDBMS sites,

System A and System K, execute them on the host computers,

120

'" j

the VAX and the S-100 computer, and return the results to

the user site. The most difficult part implemented was that

of a multiple-site JOIN, where one relation of the JOIN

appeared at one DDBMS site and the other relation at the

other site. The next section will discuss results of

queries testing the DDBMS.

Testing and Evaluation

The software written during the implementation phase

was tested to see its performance accuracy. Cases were

devised to test both the quality of the data that was output

and the speed of execution. Only the software written for

this thesis was tested thoroughly, though modules such as

the Roth-dBASE II translator and the NETOS ISO Layers had to

perform successfully for the implementation to work.

In the production of the DDBMS software running the LSI

computers in the Digital Engineering Laboratory, each module

was again individually tested and connected together for a

system test. For this testing, relations were chosen on the

S-100 and VAX systems. The list of queries used in the

testing is in Figure E-8. Note that SELECT, PROJECT, and

JOIN queries were chosen so that one of each could be done

with data residing at a particular site, and also a

multiple-site JOIN is executed. Each of these queries was

sent to both System A and System K. The results were

evaluated to be correct.

121

4 6

a) JOIN supply, parts WHERE pnum = pium GIVING newrel
(one site INGRES JOIN)

b) JOIN supply, shipment WHERE snum = snum GIVING newrel
(multiple-site JOIN)

c) JOIN bolts, nuts WHERE type = type GIVING newrel
(one site dBASE II JOIN)

d) SELECT ALL FROM parts WHERE ((color black) or (color =

gray)) and weight > 500 GIVING newrel
(INGRES SELECT)

e) SELECT ALL FROM bolts WHERE (pnum > 30) and (quan > 400)
GIVING newrel

(dBASE II SELECT)

f) PROJECT supply OVER snum, pnum, jnum GIVING newrel
(INGRES PROJECT)

g) PROJECT nuts OVER pname, type GIVING newrel
(dBASE II PROJECT)

Figure E-8 List of Queries Used in DDBMS Testing

Figure E-9 is a graph of the execution times of the

queries from Figure E-8 run in the DDBMS. Note the relative

slowness of the queries that required data from the UNIX VAX

(frequently overloaded) compared to those that did not

require UNIX VAX data. Also note that queries requiring

data from more than one computer ran longer than those which

required data from only one computer. Finally, note that

queries requiring data from the other computer ran longer

than those just needing data from that site's host computer.

Conclusions

There are several projects that can be done at AFIT to

follow after this thesis effort. First, an update

122

- -..

Figure E-8 a)

b) !

c) ._

d)

e)

f)

g)

1 2 3 4 5 6 7 8 9

Time in Minutes

Figure E-9 Graph of Total Execution Times
for DDBMS Queries

translator is needed in the DEL. Second, the functions of

the CNDD and maintaining pending updates need to be

implemented. Third, DDBMS update software should be

implemented to include an update concurrency algorithm.

Fourth, a DDBMS query optimization algorithm is required to

direct query parts to optimum sites in the DDBMS. Fifth,

software should be implemented to reconfigure the DDBMS when

needed and in case of possible catastrophe. Sixth, more

123

sophisticated translators are essential to handling more

complicated relational DBMS statements and in the conversion

of statements from a network or hierarchical DBMS language

to a relational one. Seventh, algorithms should be

implemented to handle input, process, arid output queues to

transfer messages between DDBMS sites. Finally, once the

above projects are finished, the system needs to be

converted to be heterogeneous, that is, to handle multiple

types of DBMS languages as inputs.

This thesis effort barely scratched the surface of a

huge and widely expanding distributed database research

area. It provided a design basis for the projects mentioned

earlier in this chapter to continue research at AFIT in this

area. The field is very wide and demanding, too large to

cover completely in one thesis.

The major areas of study should be the update

concurrency, the query optimization, the DDBMS

reconfiguration, and the CNDD site software. Also, various

translators will be needed to communicate between the

various types of DBMSs. AFIT has a good start as far as

hardware for this area by having LSI computers in the NETOS

network, but will require much more powerful computers to

handle the load of DDBMS software. Especially helpful would

be multi-programing computers that could run both DDBMS

software as well as user/DBMS application software

concurrently on the same system. Hopefully, years of

124

. *. research at AFIT will provide a greater understanding of the

distributed database field.

m

125

Bibliography

1. Coles, R. J. et al. "WIS Joint Mession Applications--

Database Management and Distributed Processing

Recommendations," Mitre Corporation, Bedford, MA, January

1984 (AD-A090 025).

2. Dawson, Jeffery L. "A Transaction Workload Model and its

Application to a Tactical C3 Distributed Database System,"

Mitre Corporation, Bedford, MA, July 1980 (AD-B080 706L).

3. Gunning, Chris R. "A Roth Relational DBMS to dBASE II

Query Translator," Project for Introduction to Database

Systems, EE6.46, December 1983.

4. lartrum, Thomas C. "LSINET Network Protocol, ISO

Model," Version 1.0, Documentation Paper, School of

Engineering, Air Force Institute of Technology (AU), Wright-

Patterson AFB, OH, July 1984.

5. Inker, Capt Eric F. Design of a Distributed Database

Management System for Use in the AFIT Digital Engineering

Laboratory, MS Thesis GCS/EE/82D-21. School of Engineering,

Air Force Institute of Technology (AU), Wright-Patterson

AFB, OH, December 1982.

6. Lin, W. K. et al. "Distributed Database Control and

Allocation. Volume 1. Framework for Understanding

Concurrency Control and Recovery Algorithms." Computer

Corporation of America, Cambridge, MA, October 1983 (AD-A138

891).

7. -------. "Distributed Database Control and Allocation.

.126

4

Volume 2. Performance Analysis of Concurrency Control

Algorithms." Computer Corporation of America, Cambridge,

MA, October 1983 (AD-A138 892).

8. --- "Distributed Database Control and Allocation.

Volume 3. Distributed Database System Designer's Handbook."

Computer Corporation of America, Cambridge, MA, October 1983

(AD-A138 893).

9. Peters, Lawrence J. Software Design: Methods and

Techniques. New York: Yourdon Press, 1981.

10. Roth, Mark A. The Design and Implementation of a

Relational Database System, MS Thesis, GCS/EE/79-14. School

of Engineering, Air Force Institute of Technology (AU),

Wright-Patterson AFB, OH, December 1979.

11. Tanenabaum, Andrew S. "Network Protocols," Computing

Surveys, 13: 453-487 (December 1981).

12. Thomas, Robert H. "A Solution to the Concurrency

Control Problem for Multiple Copy Data Bases," Tutorial:

Distributed Data Base Management, 88-94. New York: IEEE

Computer Society, 1978.

13. Tsuchiya, M. and Mariani, M. P. "Distributed Database

Performance Modeling," TRW Incorporated, Colorado Springs,

CO, September 1983 (AD-A090 025).

14. Wong, Eugene. "Retrieving Dispersed Data from SDD-1:

A System for Distributed Databases," Tutorial: Distributed

Data Base Management, 50-68. New York: IEEE Computer

Society, 1978.

127

15. Woodfill, John et al. INGRES Version 6.3 Reference

Manual, University of California at Berkeley, Berkeley,

California, April 1981.

128

I"

VITA

Captain John G. Boeckman was born on 5 December 1955 in

Omaha, Nebraska. lie graduated from high school in Omaha in

1974 and attended the University of Nebraska-Lincoln from

which he received the degree of Bachelor of Science in

Mathematics in May 1978. In October 1978, he entered

officer Training School at the Lackland Training Annex,

Texas, where he received his commission in the USAF in

January 1979. He attended the Computer Systems Analyst

Course at Keesler AFB, Mississippi until April 1979, when he

was assigned to the 3900 Computer Services Squadron, Offutt

AFB, Nebraska. Ile was assigned there until entering the

School of Engineering, Air Force Institute of Technology in

May 1983.

129

|°- - . .--. .. .0.

UNICLASSIFIED

* X. SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

" .a. REPORT SECURITY CL I ION lb. RESTRICTIVE MARKINGS

2.. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

-pproved for public release;
20. DECLASSIFICATION/DOWNGRADING SCHEDULE dis tribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

i* APIT/GCS/NG/4D- 5
6L NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7s. NAME OF MONITORING ORGANIZATION

School of Engineering f applicable)

6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

1.. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

Rome Air Development Ctr COTD

Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
* Griffis AFB, New York 13441 ELEMENT NO. NO. NO. NO.

11. TITLE (Include Security Clasification))" See Box 19

12. PERSONAL AUTHOR(S)
John G. Boeckman, B.S., Capt, USAP'

0 3& TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. MO.. Day) 15. PAGE COUNT
MS Thesis FROM TO_ 1984 December 139

IS. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP FSUBG. Distributed Database, NTetwork, Database,

Dintributed Database Panagement System

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Titles DESIGN AND IMPLEMENTATION OP THE
DIGITAL ENGINEERING LABORATORY
DISTRIBUTED DATABASE MANAGEMENT SYSTEM) H iibii.. AW Aal t

ltea for Pese'Ch :;] Pr(!.ionl Dev..lop m

At Fotce Institute cI fchno;g09 AICI

Thesis Chairmant Dr. Thomas C. llartrum AgbA... 94-If",4.

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

iNCLASSIFIEO/UNLIMITED 6 SAME AS RPT. 0 OTIC USERS 0 UNCLASSIFIED

22. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL
Dr. Thomas C. artrum 513-255-3576 AFIT/ENG

00 FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE. U,!QLA SITIED
SECURITY CLASSIFICATION OF THIS PAGE

, :, '--'. .-~~~~~L ..- %-.... - - . .. , , . . .v , --.- . .. ,

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

This effort produced a basic design and partial
implementation of a distributed database management
system (DDBMS) for use in the AIT Digital Engineering
Laboratory. The objectives of this thesis were to
lay out the requirements for a DDBMS, to design a
simplified implementation of one, and to accomplish
a partial implementation of that design.

The requirements analysis used the Structured
Analysis and Design Technique (SADT) to document the
DDBNS requirements. The analysis, independent of any
hardware or specific algorithmic implementation,
covers all aspects of a DDBMS, including routing and
execution of queries and updates, DDBMS initialization
and reconfiguration, and recovery from network mal-
functions.

The detailed design expanded the SADT diagrams
of the requirements analysis for specific methods
of executing queries and updates in the DDBMS. These
methods were selected to limit the scope of that
design. Structure charts were produced using the q/DT
diagrams as a reference, specifying parameters and
algorithms for the modules.

Only the part of the design that handles DnBMS
queries was implemented. The implementation was
greatly simplified to exclude query partitioning and
optimization. Two DDUVS nodes were connected to host
computers that evaluate queries aid return the resulting
relation.

0

0' U ;CLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGEL -" .. " "." •" : ." ", , ' " .; ..-" -' '> .- >.' " ' ... " .< .-> ' -.

r
K-
0

S

* FILMED

5-85S

S

* DTlC
0

*

. . . . -......................... *,. .~....

